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Overview
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Timeline
• Project start 1/1/02
• Project end 12/31/05
• 80% complete

Barriers 
O. Stack Material & Mfg Cost
P. Durability
Q. Electrode Performance
R. Thermal & Water Mgmt

Targets
• Cost:  $35/kW, 
• Durability:  > 5000 hrs, 
• Precious metal loading:  0.2 g/ 

rated kW
For fuel cell stack system for 2010 

from HFCIT Multi-Year Plan

Budget
• Total Project funding

- $7 million DOE
- $2 million contractor share

• Received in FY04:  $2 million
• Projected funding for FY05:  $1.8 

million

• Case Western Reserve Univ.
• Colorado School of Mines
• Dalhousie University
• University of Illinois

• University of Miami
• University of Minnesota
• VAIREX Corporation
• Collaboration with LBNL and BNL

Partners



Objectives

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 33

Overall Contract Objective
Development of high performance, high durability, lower cost 
membrane electrode assemblies (MEA’s) qualified to meet 
demanding system operating conditions of higher temperature, little or 
no humidification, while using less precious metal catalyst.

Past Year Objectives
a) Tasks 1 & 3: Demonstrate PFSA based MEA capability with:  

adequate membrane and catalyst performance to meet 0.2g Pt/kW , 
durability to potentially operate for 5000 hours in the range of 85 < T < 
~ 120ºC under sub-saturated inlet conditions with start-stop cycling, 
and pilot-scale production levels.

b) Task 2: Development and characterization of new proton conducting 
electrolytes and incorporation into membranes for operation at T > 
120ºC, based on non-aqueous proton conduction mechanisms.



Approach
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Tasks 1 and 3: 85 < T < 120oC MEA by roll-good processes
a) Develop 3M PFSA membranes  for operation at  85 < T < ~ 120ºC, with

enhanced durability operating on low humidification and pilot scale production 
capability.

b) Developed advanced 3M - NanoStructured Thin Film (NSTF) catalysts with high 
performance at ultra-low Pt loadings having enhanced durability for operation 
over 85 < T < 120ºC with start-stop cycling, using pilot scale production 
capability.

c) Match the 3M PEM and 3M NSTF catalyst for optimum performance, durability

d) Advance pilot scale process development for roll-good catalyst coated 
membrane (CCM) fabrication of the NSTF catalysts and 3M PEM from c).

e) Optimize the MEA GDL for dry operation with the CCM from d).

Task 2: High temperature electrolytes (T > 120oC):
a) Develop membranes comprising polymers blended with stable non-volatile 

3M superacids. 
b) Investigate new heteropolyacid additives for proton transport under hotter, 

drier conditions and methods for stabilizing in presence of water.



Task 1, Task 3: 85 < T < 120oC MEA by roll-good processes
- New 3M PEM shows greater than 15x increase in lifetime under 90/70/70oC load-

cycling accelerated tests,  compared to standard PFSA membrane.
- 3M PEM shown to have higher conductivity at lower water-per-sulfonate group.
- New 3M PEM maintains 25-30 mS/cm conductivity at 120oC and 80oC dewpoint

- Over 1000 ft of 3M PEM coated at pilot scale.
- 3M NanoStructured Thin Film catalysts achieved 0.22 g-Pt/kW at 100kPA with

0.12mg-Pt/cm2-MEA; and < 50 mV of mass transport overpotential at 2 A/cm2.
- 3M NSTF/3M PEM MEA demonstrated over 1000 hour lifetime at 120oC

- 3M NSTF-ternary catalysts produce 75x less F - than Pt/carbon dispersed catalysts at
120oC with same PEM and GDL.

- 3M NSTF catalysts are ~ 80x more resistant to loss of ECSA via Pt dissolution by 
CV cycling between 0.6 – 1.2 volts, than Pt/carbon dispersed catalysts.

Task 2 : T > 120oC electrolytes
- Performance in fuel cell under H2/air at 110oC better than PBI/H3PO4 with 

catalyst loading of only 0.4/0.4 mg/cm2 Pt/Pt (3M acid more ORR compatible).
- Pulse field gradient spin echo-diffusion measurements show lower activation

barriers for H+ transport of new heteropolyacids, and higher maximum Temps.

Technical Accomplishments
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The new 3M ionomer has a slightly shorter side chain than standard 
PFSA membrane ionomer without the pendant -CF3 group: 

Gives: - higher degree of crystallinity, 
- higher modulus, 
- higher Tg at a given equivalent weight (EW).

Allows: - lower EW membranes with higher conductivity, 
- improved mechanical properties and durability under 
hot, dry conditions.

- enhanced oxidative stability in Fenton’s test

OCF 2CFOCF 2CF2

CF3

OCF2CF2CF2CF2

SO3H

(CF2CF)n(CF2CF2)m

Standard PFSA

(CF2CF)n(CF2CF2)m

New 3M Polymer

SO3H

Technical Accomplishments – 3M PEM Definition
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Technical Accomplishments – 3M PEM Performance
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Comparison of conductivity at 30°C vs. hydration state (λ) of 
1000 EW 3M membrane and standard 1100 EW PFSA membrane
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Technical Accomplishments – 3M PEM Performance

Advanced MEAs for Advanced Operating Conditions – 2005 DOE Hydrogen Program Review, May 23 – 26 8

• Conductivity vs. temperature for EW ionomers in 730 – 980 EW range.
• The lowest EW ionomer tested so far, 730 EW, shows a conductivity 

of about 25-30 mS/cm at 120˚ C, 80˚ C DP, very dry conditions.
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Technical Accomplishments – 3M PEM Durability
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Lifetime and performance vs. EW under load cycling.

Normalized lifetime 5 samples each
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Performance and lifetime during 
accelerated durability testing

Technical Accomplishments – 3M PEM Durability
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Technical Accomplishments – NSTF Fundamentals
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Scanning Transmission 
Electron Microscopy images 

from U. of Illinois

“Whiskerettes” growing on the sides 
of the larger whiskers as pyramidal 
crystallites with fcc(111) side facets 
and fcc(100) truncated top.
(L. Gancs, A. Wieckowski)

3M Scanning 
Electron Micrographs

Surface free energy of crystallites 
are minimized by  truncating a [111] 
faceted pyramid with a [100] top.

[111]

[100]

b

a

Experimentally measured values 
of a ~ 2nm, b~ 6nm or a/b=1/3.

Calculated energy minimized 
when r = a/b ~ 0.33.

Relating fundamental catalyst morphology to enhanced properties.

10 nm10 nm

1 nm1 nm1 nm1 nm



PtAxBy NSTF ternary catalyst development 
- 113 different compositions/structures fabricated, all by roll-good process.
- Specific activities in 50 cm2 cells depend on a structure factor, and composition
- Best performances obtained for most durable catalysts (see later slides) and their
performance is insensitive to structure factor, implying a large process window
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Technical Accomplishments – NSTF Catalyst Devel.

Best PtCD NSTF ternary
Cathode loading:  0.1 mg-Pt/cm2

Anode loading: 0.15 mg/cm2
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FC9321-495, 0.15 mg Pt/cm2,  66%/45%
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75C cell, 0/0 psig inlet, H2/air
CF800/1800 sccm, counterflow.
Humidity: as stated
PDS(0.85,0.25,0.048,10s/pt), PSS(0.4V, 
5 min)

Technical Accomplishments – NSTF Catalyst Loadings
NSTF Catalysts with Ultra-low Pt Loading Continue to Improve
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• Little effect of anode loading over range of 0.05 to 0.2 mg Pt/cm2 above 0.6 V in 
MEA’s having  PtCxDy ternaries (0.1mg Pt/cm2 ) on the cathode.

• 3M record performance achieved by better matching NSTF 
ternary catalyst and whisker support size and density, in 
MEA’s having 0.060 mg-Pt/cm2 on A/C.

0.12 mg Pt/cm2 total per MEA 
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Technical Accomplishments – NSTF electrode
Mass transport overpotential (MTO) correlated to NSTF electrode thickness 
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• MTO < 50 mV at 2A/cm2 possible for Pt
ternary constructions w/ 0.1mg-Pt/cm2 .

• SEM thicknesses agree with calculated 
thicknesses from known loadings 

• Allows determination that electrode 
porosity is ~ 75%, filled with ionomer.
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• F- release rates (by IC) measured for a series of PtAxDy and  PtCxDy
NSTF ternary catalysts under a fixed protocol.  

• F- release( peroxide generation) rate is a function of NSTF construction.

• NSTF catalysts do not 
contain carbon, so any 
peroxides generated on 
carbon of carbon-supported 
dispersed Pt is eliminated.

• NSTF catalysts have 5x 
higher specific activity than 
Pt/Carbon, implying less H2O2
production

NSTF catalysts and H2O2 production and F- release rates
Technical Accomplishments – NSTF MEA Durability
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• Same 3M PEM
• Same 3M GDL

Technical Accomplishments – NSTF Durability
120oC Stress tests of MEA and catalyst surface area durability
- CJ = 0.4 A/cm2, 100 cm2 cell, 300kPa H2/air, A/C inlet % RH = 61%/84%
- 18 – 66 hrs at 120oC, water collected for F- release, then 6 hrs at 75oC for 

ECSA, H2 cross-over, short resistance measurements.  Cycle repeated.
Recent results comparing NSTF and Dispersed Pt/Carbon (Neat 3M PEM)
- reversible impurity adsorption during each 18 hr cycle (cleans up during CV)
- NSTF MEA lifetimes 15-20 x longer than dispersed Pt/Carbon catalyst MEA.
- MEA lifetime scales with F- release.  NSTF F- release ~ 75 x less than Pt/C.

Lifetime versus F- ion release rate for 
NSTF and Dispersed Pt/C MEA’sVoltage vs time for NSTF and Pt/C MEA’s at 120oC
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To – date : Best NSTF MEA = NSTF ternary PtCx2Dy2 (0.1 mg Pt/cm2)

+ Neat 3M PEM (no additives, or edge protection tested yet)+ 3M GDL

- Cathode and anode surface area losses stabilize to ~ 40% and 50% of initial value. 
- Shorting and H2 cross-over values remain stable and low until end of life.
- F- ion release rate at 120oC  remains < 24 nanogram / hr- cm2 over 1800 hours.
- Decay rate of peak voltage is ~ 77 microvolts/hr over 1800 hr lifetime.

Technical Accomplishments – NSTF Durability
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CV cycling stability of catalyst surface area 
as a function of temperature for one NSTF 
PtCD ternary versus Pt/Carbon catalysts.

CV cycling stability of catalyst surface area 
at 80oC for NSTF Pt and best NSTF ternary 

versus Pt/C and Pt/graphitic carbon.
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• Same 3M PEM
• Same 3M GDL

• NSTF catalysts are much more resistant to loss of  surface area from high voltage 
cycling  than are dispersed Pt/Carbon or Pt/graphitic-carbon catalysts.  
• NSTF catalysts should be more robust against shut down/start-up, and local H2

starvation.  70% of NSTF ECSA remains after 12,000 cycles to 1.2 volts at 80oC.

Technical Accomplishments – NSTF Durability
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CV cycling measurements from 0.6 – 1.2 V  test stability against Pt dissolution

0 3000 6000 9000 12000 15000
0.01

0.1

1

Pt/C
NSTF-90oC

NSTF-85oC

NSTF-75oC

NSTF-75oC

NSTF - 95oC

65oC

Pt/C-80oC

Pt/C - 95oC

CV cycling data-graph 14

 

N
or

m
al

iz
ed

 E
C

SA

Number of CV Cycles

• Same 3M PEM
• Same 3M GDL

3



30 40 50 60 70 80 90 100 110
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

90/0/0oC
85/0/0oC

80/0/0oC

75/0/0oC

70/0/0oC

70-90C cell
0/0% Inlet RH

15/15psig H2/Air
CS2/2

GSS(0.4, 120min)

H
FR

 (o
hm

-c
m

2 )

Outlet RH (%)

Technical Accomplishments – Thermal - Water Manag.
Dry operation –GDL Screening and Optimization
• Operation with totally dry inlet H2/air is possible at 75oC and 200kPa with no loss 

of performance for some GDL/NSTF combinations. (1000 EW 3M PEM)
• Introducing some inlet RH allows operation at higher ToC.
• Further optimization necessary for both hot dry and cold start.
• All GDL’s are roll-good fabricated, like NSTF and 3M-PEM.
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Cell voltage operation at 15 psig and 
0%/0% RH inlet humidification with varying 
temperature for different GDL’s.
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Technical Accomplishments – Performance Targets
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• NSTF Pt specific power density is  < 0.3 gPt/kW for cell voltages < 0.70 V
for conditions shown.  Entitlement may be lower still due to:

- Opportunity to increase mass activity by optimizing support whisker
- Opportunity to further reduce impedance of electrode and GDL

• NSTF catalyst based MEA’s with 3M PEM clearly show potential to
reach 5000 hours of lifetime for 80oC < T < 120oC, due to:

- Enhanced stability and lower F- release rates of NSTF catalyst, 
- Enhanced stability, mechanical properties of 3M PEM

• Stable operation with totally dry 
input gases is possible under 
conditions near water balance –
requires optimization of the GDL and 
further gains matching lower EW 
PEM to NSTF catalysts.

• All 3M PEM, NSTF catalyst, and 
GDL are currently fabricated using 
scalable, cost-effective, roll-good 
fabrication processes.
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• Temp/RH dependence was significantly 
lower for polymer swollen with Acid A than 
with Acid B or C measured by AC 
impedance. Conductivity was measured 
with an 80˚C dew point.

• Polymer swollen with Acid C retained acid 
much better when immersed in water than 
PBI/H3PO4 as shown by pH versus time.

• Even though  Acid C had lower 
conductivity, Fuel cell performance was 
higher, presumably due to better cathode 
kinetics.
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Pulse Field Gradient Spin Echo –
Diffusion Measurements

• Preliminary measurements on dry 
membranes

• Control Ea = 27.5 KJ mol-1, Most HPA 
doped around 15 KJ mol-1
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SAXS
• Two scattering domains:
• hydrophilic   <D> 1.7, d 3.1 nm – dry

<D> 3.8, d 5.1 nm – wet
• hydrophobic <D> 8, d 14 nm – wet or dry
• HPA – higher scattering intensity, larger 

distribution of scattering domains and a 
Bragg peak corresponding to HPA 
crystallites
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1. “I have mixed reactions to 3M’s claims re: less fluoride generation by their 
new membranes.  Are these results because of mismanufacturing of Nafion-
based MEA’s?”

* F- release rates from new 3M PEM are well documented and correlate
with much longer lifetimes under accelerated testing.  

* 3M has sold over 200,000 MEA’s using Nafion based ionomers and
has optimized the manufacturing process.

* 3M’s NSTF catalysts can lower F- rates even further with 3M PEM.

2. “Stay the course but do accelerate the outside collaborations with industry.”
* 3M will introduce the new 3M PEM to selected customers 2nd quarter 
2005, and NSTF ternary MEA’s to selected customers end of 2005.

3. “Conductivity and fuel cell polarization measurements should be extended   
down to 20oC, perhaps even down to –20oC.”

* Low temperature testing is outside the scope of the project and DOE 
targets for the contracted work.

* However, cold start and freeze tolerance are very important and are 
being studied at 3M.



Future Work
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Completion of Task 3: Advanced MEA Development for 85< T < 120oC:
- MEA pilot level scale-up and large area stack testing.

• M1 – down-selection of final x/y values for PtCxDy ternary and loading
• M2 – down-selection of final 3M-PEM properties for durability, ramp-up
• M3 – down-selection of final GDL for reduced IR loss and dry operation
• M4 – CCM process transfer to new pilot scale equipment
• M5 – Statistical validation of pilot scale roll-good fabricated CCM’s
• M6 – MEA fabrication for designated stack testing (312 cm2)
• M7 – Short stack testing (~ 3-5 kW)
• M8 – Testing customized Vairex air management systems w/NSTF MEA.

Completion of Task 2: High Temp. Electrolytes for T > 120oC.

• Further characterization of polymer/acid combinations focused on 
membrane conductivity and stability.

• Moving to immobilized heteropolyacids for fuel cell testing.
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The most significant hydrogen hazard associated 
with this project is: 

• Accidental H2 release in cylinder closet 
leading to ignition from:
- H2 line or manifold breach
- Accident during replacement of cylinders

Hydrogen Safety
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Our approach to deal with this hazard is:
• Design

- Hydrogen cylinder closet and gas distribution system adhere to codes.
- Reduction in number of cylinders in the closet
- 2-step regulators (less susceptible to failure and designed to fail closed)
- H2 sensors in all labs and cylinder closet, alarm system
- Automatic shut-off of H2 gas supply if sensors detect H2 release

• Procedures 
- SOP’s for cylinder changing, alarm responses, test station operation
- Cylinder changing restricted to highly trained personnel 
- Regular maintenance checks – sensors, leak check of valves etc.

• Installing H2 Generator (in non-inhabited mechanical 
room) to significantly reduce total volume of H2 in facility


