Hydrogen on Demand[™] Fuel Systems for Military Applications

Military Fuel Cells 2003 Presentation October 20-21, 2003

Richard M. Mohring, Ph.D. Director, Product Development and Engineering

Millennium Cell, Inc. One Industrial Way West, Eatontown, NJ 07724 mohring@millenniumcell.com

Outline

- Millennium Cell company overview
- Hydrogen on Demand[™] Process
 - Hydrogen storage/generation via sodium borohydride
 - Description of hydrogen generation reaction
 - How the HOD[™] system works
- Utility for Military Applications
 - Examples of technology applications and performance
- Summary

Millennium Cell Company Overview

- We are a development stage, intellectual property company that licenses enabling technologies for the hydrogen economy
 - 20 patents issued to date
 - 35 patent applications submitted to date
- Public offering in August 2000 (NASDAQ: MCEL), currently 40 employees located in Eatontown, NJ
 - 27 in Product Development organization, including 10 Ph.D.s
- Announced commercial relationships with market leaders:

DAIMLERCHRYSLER BALLARD[®] PSA PEUGEOT CITROËN DUIII Electric Boat Company

U.S. Department of Energy Energy Efficiency and Renewable Energy

MILLENNIUM

Hydrogen Generation from Sodium Borohydride (SBH) Hydrogen on Demand™ Process

- Hydrogen is generated in a controllable, heat-releasing reaction
- Fuel is a room-temperature, non-flammable liquid under no pressure
- Hydrogen generated via the HOD[™] process is of high purity (no carbon monoxide or sulfur) and is humidified (heat generates some water vapor)
- U.S. Patent 6,534,033: "System for Hydrogen Generation"

Volumetric Storage Efficiency

Volumetric storage: $30 \text{ wt\%} \text{ fuel} = ~63 \text{ g H}_2/\text{L}$ For comparison: Liquid H₂ = ~71 g H₂/L $5000 \text{ psi} = ~23 \text{ g H}_2/\text{L}$ $10000 \text{ psi} = ~39 \text{ g H}_2/\text{L}$

> For a practical system, balance of plant (both volumetrically and gravimetrically) is key to energy density

Gravimetric Storage Efficiency of SBH

Fuel Cell Water Integration

SBH has the intrinsic energy density to be a competitive hydrogen source

Challenges:

- Water management
- Thermal management
- Fuel/borate handling

MILLENNIUM

How Hydrogen on Demand[™] Works

Utility for Military Applications

- Sodium borohydride is unique in that it has strong performance metrics at multiple power levels:
 - Transportation (ground, maritime)
 - Auxiliary power generation, UUV
 - Battery chargers, standby power
 - Battery replacement, man-portable

(50-100 kW) (5-10 kW) (1-5 kW) (<100 W)

- Small logistical footprint: SBH can be transported or airdropped as a solid, and mixed with water on-site:
 - Water does not need to be of high-purity
 - Tests underway to determine applicability of various water sources
- Sustainability: well suited to long mission duration

Transportation: Commercial Vehicle Demonstrations *Hydrogen On Demand™ Systems*

Chrysler Town & Country Natrium®

- Fuel cell electric hybrid minivan
- Debut at 2001 EVAA, tour 2002-03
- 300 mile range for system
- 2002 Popular Science "Best of What's New" award winner

Peugeot-Citroën H₂O Vehicle

- Fuel cell electric hybrid vehicle, fire rescue vehicle concept car
- Debut at 2002 Paris Auto Show

CELL

- FC is ~5 kW range extender
- >250 km range for system

Chrysler Town & Country Natrium® Powered by the Hydrogen on Demand™ system

10 - Military Fuel Cells: Oct 20-21, 2003

Volumetric Efficiency of Hydrogen Storage/Generation Increased Packaging Flexibility

Compressed H₂ cylinders (3 tanks @ 5,000 psi)

Hydrogen On DemandTM H₂ generation system, fuel and borate tanks

(Equals energy storage of about 5 compressed tanks)

Hydrogen on Demand[™] System Performance Hydrogen Flow Profile Comparison Against Compressed H₂

Compressed hydrogen (in **red**) shown vs. Hydrogen on Demand[™] (in **blue**)

Hydrogen flow profile shown is similar to flows experienced in a typical driving cycle

Up to ~65 kW power demand shown in this test run.

MILLENNIUM

HOD[™] has the ability to "load follow", even with aggressive transients.

MCEL has demonstrated HOD technology scaled from <2 W to ~100 kW.

Hydrogen on Demand[™] Standby/Auxiliary Power Unit DS –1 Prototype 1.2 kW System

- Small systems typically run at < 40 psig system pressure
- Rated at 18 SLM H₂, max flows of up to ~45 SLM (~3 kW)
- One-button operation works as a "black box" hydrogen source that looks like a low pressure hydrogen cylinder

CELL

DS-1 HODTM System, Load-following Testing 15 sec Interval Flow Testing, 0 - 18 SLM H₂ (~ 0 - 1.4 kW), P₀ = 28 psig

1.5 kW Rack-mount HOD™ System *Hydrogen generation module*

- Fits standard 19" telecom rack
- H₂ output: 0-20 SLM
 @ >99.9% purity
- Delivery pressure: 20-30 psig
- Load-following
- Modular PLC controls
 - Easy integration with fuel cell control logic

1.5 kW Rack-mount HOD™ System *Shown with fuel/borate storage module*

- Stored hydrogen:
 - ~10,000 SL
- Generator module approx. dimensions:
 - 17" W x 6.5" H x 21" D
- Fuel storage module:
 17" W x 14" H x 21" D
- Dry weight (w/o rack): approximately 50 lbs.
- Performance testing currently underway

Prototype Man-portable HOD™ System

- Second-generation proofof-concept prototype
 - Currently in CAD design turn
- Supports 20W (40W peak) operation
- Exchangeable fuel/borate cartridge
- Hydrogen supply at 5-10 psig
- Zero parasitic load
- Orientation independent

- Long mission life favors a fuel cell + hydrogen storage solution over primary batteries (such as BA5590)
- Dry SBH fuel cartridges can be mixed on-site as needed
- Targeting development for a 72 hour mission at 30W
- Estimated total energy density of a complete system (HOD[™] + 50% efficient FC):
 - BA5590: ~ 170 Wh/kg
 - Today's technology: >700 Wh/kg (~400 Wh/kg if water is carried)
 - Short-term technology development: >1,100 Wh/kg (>450 Wh/kg if water is carried)

Summary

- Millennium Cell is pursuing the use of sodium borohydride (NaBH₄, SBH) as a hydrogen storage medium
- Hydrogen on Demand[™] hydrogen generation technology has been successfully demonstrated in multiple applications
- The energy density and properties of SBH offer unique features and benefits for military applications:
 - Non-combustible liquid fuel, ability to mix on-site, long shelf-life...
- Development opportunities:
 - The fuel cell creates water...Optimization of HOD + PEMFC system can allow for use of high concentration SBH fuels
 - Systems design and engineering to access higher energy densities
 - Continued improvements in NaBO₂-to-NaBH₄ regeneration chemistry and catalyst technologies

