A Novel Slurry-Based Biomass Reforming Process

Thomas Henry Vanderspurt, Sean Emerson, Ying She, Hongmei Wen, Susanne Opalka

United Technologies Research Center May 24, 2005

Project ID # **PD 14**

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- 1 May 2005
- 31 Oct 2008
- 2%

Budget

- Total project funding and the Feedstock Flexibility
	- –\$2.9 million, DoE
	- –\$737k, cost share
- \$0, FY04
- \$300K, FY05

Barriers

- Barriers:
	- V. Feedstock Cost and Availability
	- W. Capital costs and efficiency of technology
- Barriers Addressed
	- Technology Energy Efficiency
	- Capital Cost
	-

Partners

• University of North Dakota Environment Energy Research **Center**

Biomass Slurry Reforming Objectives

DOE: \$1.75 kg 99.9+% H_2 with an LHV efficiency of 50%

- 1. Determine LHV Efficiency Using HYSYS
	- •Major efficiency determinants and impact of catalyst efficiency/selectivity
	- •Required hydrolysis rate per in unit input energy
	- •Capital and energy cost of intermediate hydrogenation step
- 2. ${\sf H_2}$ Cost via H2A Spreadsheet: Plant Cost, Rate of Return & Feedstock Costs
- 3. If DOE Cost and Efficiency Targets Can Be Met, Commence Next Phase
	- •Optimum hydrolysis conditions: Energy and Capital Cost
	- \bullet Hydrolysis product chemical composition and physical properties
		- Sugar identification and concentrations
		- Identification and quantification of low molecular weight organics
		- -Solubility, AMW and surfactant/foaming properties of lignin fraction
	- Catalysis discovery and testing
- 4. Micro-scale continuous operation of membrane reformer with batch hydrolysis
	- •~500 hr catalyst performance test
	- •Collection of material and heat balance data important for plant design
- 5. Final Economic and Energy Analysis for Final Report

Project Schedule

Approach: Biomass Slurry to Hydrogen Concept

Original Project Plan Overview

Approach: Initial Process Inputs and Outputs

Approach: Experimental Design to Optimize Hydrolysis

- Overall efficiency depends on optimizing hydrolysis energy / acid requirements
	- Lower acid concentration
		- + Less expensive alloys etc.
		- + Higher SA & activity reforming catalysts = smaller reforming reactors
		- + Less unnecessary chemical degradation = higher ${\sf H}_{2}$ yield
	- Lower Temperature
		- + Increased residence time thus larger volumes and increased costs
		- + Lower autogenous steam pressures = lower capital costs
		- + Less expensive alloys etc.
		- + Less dehydrogenation etc. = higher ${\sf H}_2$ yields
- Poplar assumed to be initial feed; grinding energy similar to mechanical pulping
- Input data for refined economic and efficiency model

Nano-Engineered Noble Metal / Doped Metal Oxide Catalyst

Design & synthesize active oxide structure to maximize accessible sites/vol.

Conceptual Porous Metal-Oxide Framework Shown in 2D

Self assembly used to create high surface area, large pore thermally stable active oxide support with 100% dispersed 2 wt% Pt based mixed metal clusters

Conceptual Structure Realized

Fractal Morphology

UTRC Catalyst Discovery Approach

Atomistic catalyst design, synthesis, characterization, reaction studies & kinetic analysis

Catalyst Synthesis

⇔

High active surface area Nanocrystalline structure ~100% NM dispersion

Conceptual Catalyst Design Catalyst Synthesis Quantum Mechanical Atomistic Modeling for advanced catalyst design

4000 3000 2000 1000 Catalyst A $\begin{array}{ccccc}\n\hline\n\text{Catalyst B} & & \nearrow & \searrow\n\end{array}$ Characterization

Wavenumbers (cm⁻¹)

Kinetic Expressions Derived From Reaction Data

Superior Performance

VASP Modeling Insights Led To Better Catalysts

Xylose Adsorbs More Strongly Than Xylitol on Pt(111)

Aldehyde O forms stronger bond than terminal alcohol O

Negative binding energy indicates exothermic process

Ce Dopant in TiO $_{\rm 2}$ Decreases H $_{\rm 2}$ S-Pt Binding 16%

- Early results for Pt raft system, before full relaxation
- \bullet Anatase (101) TiO $_2$ with and without Ce

Binding Energy -106.53 kJ/mole Binding Energy -89.50 kJ/mole $Pt(111)_{1MI}$ /AnataseTiO₂(101) Pt(111)_{1Ml}/4.2a% Ce_Anatase_TiO₂(101)

O Ti H S Pt Ce

Oxide Dopant Shifts Pt & S DOS to Higher Energy

Progress: Conceptual Process Flow Diagram

Progress: Current HYSYS Process Flow Diagram

Future Work

- • FY 2005:
	- Initial feasibility analysis of a 2000 ton/day (dry) plant design showing a viable path towards the DOE's 2010 efficiency (50% LHV) and cost $(\$1.75/kg H₂)$ targets.
	- Low-level construction of catalyst synthesis & testing infrastructure
- • FY 2006:
	- Is there a preliminary 2000 ton/day (dry) biomass plant design that could reach the DOE's 2010 efficiency (50% LHV) and cost $$1.75/kg H₂$) targets?
	- **GO/NO GO decision**.
	- Demonstrate an acid tolerant, model sugar solution reforming catalyst
		- + Promising kinetics and selectivity
		- + Path for cost-effective scale up (mass production) exists
	- Identify preliminary hydrolysis conditions at UND-EERC and hydrolyzed product chemical composition and physical properties

Future Work

•FY 2007:

- – Demonstrate effective hydrolysis conditions for actual biomass system and a path to scale-up for a viable plant design
- – Demonstrate in the lab a potentially long lived, cost effective liquid phase biomass slurry reforming catalyst giving \sim 0.1 moles H₂/Total Pt equivalent-second
- – Demonstrate that a plant designed with experimentally determined hydrolysis and reforming rates and conditions meets 50% LHV efficiency and \$1.75 /kg H_2
- –Demonstrate wash coating of active catalyst on to selected support

•FY 2008:

- –Identify optimum hydrolysis conditions
- –Demonstrate wash-coated reforming catalyst with actual hydrolyzed biomass
- –Design, build, test and deliver proto-type continuous micro-scale reforming reactor to UND-EERC
- –Complete 500 hrs of reformer operation and collect data important to full scale pilot unit design
- –Estimate H_2/kg cost and LHV efficiency using 2000 T/day plant design finalized with actual batch hydrolysis and continuous micro-scale reforming reactor data.

Hydrogen Safety

The most significant hydrogen hazard associated with this concept is the 10% ${\sf H_2}$ content of the up to 2000 psig process gas.

Hydrogen Safety

Our Approach to deal with the hazard in the laboratory is:

- • \bullet H₂/Flammable gas detectors and ventilation interlock
	- -System alarms if $> 10\%$ LFL (0.4% H₂) detected
	- - All heater power and flammable gas flows shut off if either >25% of lower flammable limit (1% H₂) detected, or drop in ventilation rate
	- - System design limits flammable gas flows to <10% of lower flammable limit based on measured ventilation rate

Hydrogen Safety

Our Approach to deal with the hazard in the proposed micro-scale demonstration unit is:

- \bullet Multiple H₂/Flammable gas detectors
- \bullet System alarms if >10% LFL (0.4% H₂) detected
- All heater power and flammable gas flows shut off if >25% of lower flammable limit (1.0% H₂) detected at unit.
- \bullet N $_2$ purging of all potential sources of ignition