A Novel Slurry-Based Biomass Reforming Process

<u>Thomas Henry Vanderspurt</u>, Sean Emerson, Ying She, Hongmei Wen, Susanne Opalka

United Technologies Research Center May 24, 2005

Project ID # PD 14

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- 1 May 2005
- 31 Oct 2008
- 2%

Budget

- Total project funding
 - \$2.9 million, DoE
 - \$737k, cost share
- \$0, FY04
- \$300K, FY05

Barriers

- Barriers:
 - V. Feedstock Cost and Availability
 - W. Capital costs and efficiency of technology
- Barriers Addressed
 - Technology Energy Efficiency
 - Capital Cost
 - Feedstock Flexibility

Partners

 University of North Dakota Environment Energy Research Center

Biomass Slurry Reforming Objectives

DOE: \$1.75 kg 99.9+% H_2 with an LHV efficiency of 50%

- 1. Determine LHV Efficiency Using HYSYS
 - Major efficiency determinants and impact of catalyst efficiency/selectivity
 - Required hydrolysis rate per in unit input energy
 - Capital and energy cost of intermediate hydrogenation step
- 2. H₂ Cost via H2A Spreadsheet: Plant Cost, Rate of Return & Feedstock Costs
- 3. If DOE Cost and Efficiency Targets Can Be Met, Commence Next Phase
 - Optimum hydrolysis conditions: Energy and Capital Cost
 - Hydrolysis product chemical composition and physical properties
 - Sugar identification and concentrations
 - Identification and quantification of low molecular weight organics
 - Solubility, AMW and surfactant/foaming properties of lignin fraction
 - Catalysis discovery and testing
- 4. Micro-scale continuous operation of membrane reformer with batch hydrolysis
 - ~500 hr catalyst performance test
 - Collection of material and heat balance data important for plant design
- 5. Final Economic and Energy Analysis for Final Report

Project Schedule

Approach: Biomass Slurry to Hydrogen Concept

Original Project Plan Overview

Approach: Initial Process Inputs and Outputs

Approach: Experimental Design to Optimize Hydrolysis

- Overall efficiency depends on optimizing hydrolysis energy / acid requirements
 - Lower acid concentration
 - + Less expensive alloys etc.
 - + Higher SA & activity reforming catalysts = smaller reforming reactors
 - + Less unnecessary chemical degradation = higher H₂ yield
 - Lower Temperature
 - + Increased residence time thus larger volumes and increased costs
 - + Lower autogenous steam pressures = lower capital costs
 - + Less expensive alloys etc.
 - + Less dehydrogenation etc. = higher H_2 yields
- Poplar assumed to be initial feed; grinding energy similar to mechanical pulping
- Input data for refined economic and efficiency model

Nano-Engineered Noble Metal / Doped Metal Oxide Catalyst

Design & synthesize active oxide structure to maximize accessible sites/vol.

Conceptual Porous Metal-Oxide Framework Shown in 2D

Self assembly used to create high surface area, large pore thermally stable active oxide support with 100% dispersed 2 wt% Pt based mixed metal clusters

Conceptual Structure Realized

UTRC Catalyst Discovery Approach

Atomistic catalyst design, synthesis, characterization, reaction studies & kinetic analysis

Conceptual Catalyst Design

Catalyst Synthesis

High active surface area Nanocrystalline structure ~100% NM dispersion

Quantum Mechanical Atomistic Modeling for advanced catalyst design

Catalyst B Catalyst A 4000 300 2000 1000

Wavenumbers (cm⁻¹)

Kinetic Expressions Derived From Reaction Data

Superior Performance

VASP Modeling Insights Led To Better Catalysts

Xylose Adsorbs More Strongly Than Xylitol on Pt(111)

Aldehyde O forms stronger bond than terminal alcohol O

Negative binding energy indicates exothermic process

Ce Dopant in TiO₂ Decreases H₂S-Pt Binding 16%

- Early results for Pt raft system, before full relaxation
- Anatase (101) TiO₂ with and without Ce

O Ti H S Pt Ce

Oxide Dopant Shifts Pt & S DOS to Higher Energy

Progress: Conceptual Process Flow Diagram

Progress: Current HYSYS Process Flow Diagram

Future Work

- FY 2005:
 - Initial feasibility analysis of a 2000 ton/day (dry) plant design showing a viable path towards the DOE's 2010 efficiency (50% LHV) and cost (\$1.75/kg H₂) targets.
 - Low-level construction of catalyst synthesis & testing infrastructure
- FY 2006:
 - Is there a preliminary 2000 ton/day (dry) biomass plant design that could reach the DOE's 2010 efficiency (50% LHV) and cost (\$1.75/kg H₂) targets?
 - GO/NO GO decision.
 - Demonstrate an acid tolerant, model sugar solution reforming catalyst
 - + Promising kinetics and selectivity
 - + Path for cost-effective scale up (mass production) exists
 - Identify preliminary hydrolysis conditions at UND-EERC and hydrolyzed product chemical composition and physical properties

Future Work

• FY 2007:

- Demonstrate effective hydrolysis conditions for actual biomass system and a path to scale-up for a viable plant design
- Demonstrate in the lab a potentially long lived, cost effective liquid phase biomass slurry reforming catalyst giving ~0.1 moles H₂/Total Pt equivalent-second
- Demonstrate that a plant designed with experimentally determined hydrolysis and reforming rates and conditions meets 50% LHV efficiency and \$1.75 /kg H₂
- Demonstrate wash coating of active catalyst on to selected support

• FY 2008:

- Identify optimum hydrolysis conditions
- Demonstrate wash-coated reforming catalyst with actual hydrolyzed biomass
- Design, build, test and deliver proto-type continuous micro-scale reforming reactor to UND-EERC
- Complete 500 hrs of reformer operation and collect data important to full scale pilot unit design
- Estimate H₂/kg cost and LHV efficiency using 2000 T/day plant design finalized with actual batch hydrolysis and continuous micro-scale reforming reactor data.

Hydrogen Safety

The most significant hydrogen hazard associated with this concept is the 10% H_2 content of the up to 2000 psig process gas.

Hydrogen Safety

Our Approach to deal with the hazard in the laboratory is:

- H₂/Flammable gas detectors and ventilation interlock
 - System alarms if > 10% LFL (0.4% H_2) detected
 - All heater power and flammable gas flows shut off if either >25% of lower flammable limit (1% H_2) detected, or drop in ventilation rate
 - System design limits flammable gas flows to <10% of lower flammable limit based on measured ventilation rate

Hydrogen Safety

Our Approach to deal with the hazard in the proposed micro-scale demonstration unit is:

- Multiple H₂/Flammable gas detectors
- System alarms if >10% LFL (0.4% H_2) detected
- All heater power and flammable gas flows shut off if
 >25% of lower flammable limit (1.0% H₂) detected at unit.
- N₂ purging of all potential sources of ignition