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Overview

• 1 May 2005
• 31 Oct 2008
• 2%

• Barriers:
– V. Feedstock Cost and Availability
– W. Capital costs and efficiency of 

technology
• Barriers Addressed

– Technology Energy Efficiency
– Capital Cost
– Feedstock Flexibility• Total project funding

– $2.9 million, DoE
– $737k, cost share

• $0, FY04
• $300K, FY05

Timeline

Budget

Barriers

• University of North 
Dakota Environment 
Energy Research 
Center

Partners
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Biomass Slurry Reforming Objectives
DOE: $1.75 kg 99.9+% H2 with an LHV efficiency of 50%

1. Determine LHV Efficiency Using HYSYS  
• Major efficiency determinants and impact of catalyst efficiency/selectivity 
• Required hydrolysis rate per in unit input energy
• Capital and energy cost of intermediate hydrogenation step

2. H2 Cost via H2A Spreadsheet: Plant Cost, Rate of Return & Feedstock Costs

3. If DOE Cost and Efficiency Targets Can Be Met, Commence Next Phase
• Optimum hydrolysis conditions: Energy and Capital Cost
• Hydrolysis product chemical composition and physical properties

- Sugar identification and concentrations
- Identification and quantification of low molecular weight organics
- Solubility, AMW and surfactant/foaming properties of lignin fraction

• Catalysis discovery and testing

4. Micro-scale continuous operation of membrane reformer with batch hydrolysis
• ~500 hr catalyst performance test
• Collection of material and heat balance data important for plant design

5. Final Economic and Energy Analysis for Final Report
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Project Schedule
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Slurry  of ~ 10 % Ground 
Biomass (Wood) in Dilute Acid
44% cellulose
19% hemicellulose
13% “other”
23% lignin
<1%   “ash”
<1% protein

~41% soluble C6 and (C6)n “sugars”
~18% soluble “C5” sugars
~10% “reformable others”
~31% lignin+cellulose fragments etc.1 or more 

Hydrolysis
Steps

~9 g H2 or Equivalent as fuel gas
~300 g Lignin and other fuel
~1 kg CO2

~59% sugar alcohols
~10% “reformable others”
~31%  lignin + cellulose fragments, etc.

Preferential RCHO 
Hydrogenation Catalysts

High Selectivity Pt-MM rafts on 
engineered  nano-structured oxide 
like Ti[1-(x+y)]Dp1xDp2yO2

Approach: Biomass Slurry to Hydrogen Concept
Reformer Feed

Optional Sugar Hydrogenation ~83 g 99.9+ H2 / kg dry Feed
Recovered Through Membrane

Only if advanced catalysts seem 
unlikely reach g H2 / kg feed goals

Pt-Re/Ce [1-(x+y)]ZrxDpyO2 WGS Catalysts
have high activity and very low CH4 make

Hydrolysis targets
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Approach: Initial Process Inputs and Outputs
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Approach: Experimental Design to Optimize Hydrolysis 
• Overall efficiency depends on optimizing hydrolysis energy / acid requirements

- Lower acid concentration
+ Less expensive alloys etc. 
+ Higher SA & activity reforming catalysts = smaller reforming reactors 
+ Less unnecessary chemical degradation = higher H2 yield

- Lower Temperature
+ Increased residence time thus larger volumes and increased costs
+ Lower autogenous steam pressures = lower capital costs
+ Less expensive alloys etc.
+ Less dehydrogenation etc. = higher H2 yields

• Poplar assumed to be initial feed; grinding energy similar to mechanical pulping
• Input data for refined economic and efficiency model
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Nano-Engineered Noble Metal / Doped Metal Oxide Catalyst 
Design & synthesize active oxide structure to maximize accessible sites/vol.

M
Oxide

M
Oxide

Self assembly used to create high surface 
area, large pore thermally stable active oxide 
support with 100% dispersed 2 wt% Pt based 
mixed metal clusters

10 nm

5 nm Pores
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Conceptual Porous Metal-Oxide Framework 
Shown in 2D

Micropore (≥ 5 nm)Nanoparticle (< 3.5 nm)

MacroPores

Conceptual Structure Realized
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High active surface area 
Nanocrystalline structure

~100% NM dispersion

Conceptual Catalyst Design Quantum Mechanical Atomistic 
Modeling for advanced catalyst design

Catalyst Synthesis

⇔ ⇔ ⇔

UTRC Catalyst Discovery Approach
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Catalyst A

Catalyst B =+
Kinetic Expressions Derived

From Reaction Data 5% CO, 33% H2O, 10.5% CO2, 30% H2
Total flow: 2.6 L/min;  0.5 cc catalyst
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Atomistic catalyst design, synthesis, characterization, reaction studies & kinetic analysis
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Pt /Mo0.1Ce0.7Zr0.2 173 m2/g
Pt/Mo0.1Ce0.7Zr0.2 191m2/g 
Pt/ Ce0.65Zr0.35 187 m2/g Run 2
Pt/ Ce0.65Zr0.35 187 m2/g Run 1

H2 + O → H2O CO + O → CO2
Oxide Slab   kJ/Mole   kJ/Mole
Ce12O24 -154.5 -222.4        
Ce7Zr5O24 -154.5 -222.1
TaCe6Zr5O24 77.2 9.6
MoCe6Zr5O24 48.3 -19.3

DpxCe12-(x+y)ZryO24 → DpxCe12-(x+y)ZryO23 + O 
Calculated Coupled Enthalpies

VASP Modeling Insights Led To Better Catalysts

Pt/Mo Doped CeZrOx

Pt/CeZrOx

Higher Activity Catalyst w Similar Pt & SA
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Xylose/Pt(111)

Binding Energy =  -92 kJ/mole

O C H Pt Xylitol/Pt(111)

Binding Energy =  -65 kJ/mole
Negative binding energy indicates exothermic process

[111]

Aldehyde O forms stronger bond than terminal alcohol O 

Xylose Adsorbs More Strongly Than Xylitol on Pt(111)
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O Ti H S Pt Ce

Binding Energy  -106.53 kJ/mole Binding Energy -89.50 kJ/mole
Pt(111)1ML/AnataseTiO2(101) Pt(111)1ML/4.2a% Ce_Anatase_TiO2(101)

Pt
[111]

• Early results for Pt raft system, before full relaxation
• Anatase (101) TiO2 with and without Ce

Ce Dopant in TiO2 Decreases H2S-Pt Binding 16%
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Progress: Current HYSYS Process Flow Diagram
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• FY 2005:
– Initial feasibility analysis of a 2000 ton/day (dry) plant design showing a viable 

path towards the DOE’s 2010 efficiency (50% LHV) and cost ($1.75/kg H2) 
targets.

– Low-level construction of catalyst synthesis & testing infrastructure

• FY 2006:
– Is there a preliminary 2000 ton/day (dry) biomass plant design that could reach 

the DOE’s 2010 efficiency (50% LHV) and cost ($1.75/kg H2) targets?
– GO/NO GO decision.
– Demonstrate an acid tolerant, model sugar solution reforming catalyst 

+ Promising kinetics and selectivity 
+ Path for cost-effective scale up (mass production) exists

– Identify preliminary hydrolysis conditions at UND-EERC and hydrolyzed product 
chemical composition and physical properties

Future Work
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Future Work
• FY 2007:

– Demonstrate effective hydrolysis conditions for actual biomass system
and a path to scale-up for a viable plant design

– Demonstrate in the lab a potentially long lived, cost effective liquid phase biomass slurry reforming 
catalyst giving ~0.1 moles H2/Total Pt equivalent-second

– Demonstrate that a plant designed with experimentally determined hydrolysis and reforming rates 
and conditions meets 50% LHV efficiency and $1.75 /kg H2

– Demonstrate wash coating of active catalyst on to selected support

• FY 2008:
– Identify optimum hydrolysis conditions 
– Demonstrate wash-coated reforming catalyst with actual hydrolyzed biomass 
– Design, build, test and deliver proto-type continuous micro-scale reforming reactor to UND-EERC
– Complete 500 hrs of reformer operation and collect data important to full scale pilot unit design
– Estimate H2/kg cost and LHV efficiency using 2000 T/day plant design finalized with actual batch 

hydrolysis and continuous micro-scale reforming reactor data.
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Hydrogen Safety

The most significant hydrogen hazard associated 
with this concept is the 10% H2 content of the 
up to 2000 psig process gas.
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Hydrogen Safety
Our Approach to deal with the hazard 
in the laboratory is: 
• H2/Flammable gas detectors and ventilation interlock 

- System alarms if > 10% LFL (0.4% H2) detected
- All heater power and flammable gas flows shut off if 
either >25% of lower flammable limit (1% H2) detected, 
or drop in ventilation rate
- System design limits flammable gas flows to <10% of 
lower flammable limit based on measured ventilation 
rate
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Hydrogen Safety
Our Approach to deal with the hazard in the 
proposed micro-scale demonstration unit is: 

• Multiple H2/Flammable gas detectors
• System alarms if >10% LFL (0.4% H2) detected 
• All heater power and flammable gas flows shut off if 
>25% of lower flammable limit (1.0% H2) detected at unit.

• N2 purging of all potential sources of ignition
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