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Overview

Imeline Barriers
e 1 May 2005 o Barriers:
— V. Feedstock Cost and Availability
* 31 Oct 2008 — W. Capital costs and efficiency of
o 204 technology

« Barriers Addressed
— Technology Energy Efficiency

Budget — Capital Cost
e Total project funding — Feedstock Flexibility
— $2.9 million, DoE Partners
— $737k, cost share * University of North
.« $0. FY04 Dakota Environment
. $300K. FYO5 Energy Research

Center



Biomass Slurry Reforming Objectives
DOE: $1.75 kg 99.9+% H, with an LHV efficiency of 50%

. Determine LHV Efficiency Using HYSYS

* Major efficiency determinants and impact of catalyst efficiency/selectivity
 Required hydrolysis rate per in unit input energy

« Capital and energy cost of intermediate hydrogenation step

. H, Cost via H2A Spreadsheet: Plant Cost, Rate of Return & Feedstock Costs

. If DOE Cost and Efficiency Targets Can Be Met, Commence Next Phase
 Optimum hydrolysis conditions: Energy and Capital Cost
e Hydrolysis product chemical composition and physical properties

- Sugar identification and concentrations

- ldentification and quantification of low molecular weight organics

- Solubility, AMW and surfactant/foaming properties of lignin fraction
o Catalysis discovery and testing

. Micro-scale continuous operation of membrane reformer with batch hydrolysis
o ~500 hr catalyst performance test
« Collection of material and heat balance data important for plant design

. Final Economic and Energy Analysis for Final Report 3



Project Schedule
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Approach: Biomass Slurry to Hydrogen Concept

Slurry of ~ 10 % Ground

Biomass (Wood) in Dilute Acid
44% cellulose
19% hemicellulose

13% “other” —p
23% lignin 1 of more
<1% “ash” :

<1% protein Hygtrggfls

Preferential RCHO R
Hydrogenation Catalysts 2

Optional Sugar Hydrogenation

~59% sugar alcohols
~10% “reformable others”  .....
~31% lignin + cellulose fragments, etc.

Only if advanced catalysts seem
unlikely reach g H, / kg feed goals

Reformer Feed

~41% soluble C; and (Cy),, “sugars”
~18% soluble “C.” sugars

~10% “reformable others”

~31% lignin+cellulose fragments etc.

Hydrolysis targets

High Selectivity Pt-MM rafts on
engineered nano-structured oxide
like Tiy; ., \DP1,Dp2,0,

~83 9 99.9+ H, / kg dry Feed
Recovered Through Membrane

~9 g H, or Equivalent as fuel gas
~300 g Lignin and other fuel
~1 kg CO,

Pt-Re/Ce 1 .yZPp,0, WGS Catalysts
have high activity and very low CH, make
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Original Project Plan Overview

Project start

UNDEERC
== o Acid Hydrolysis 4— 13 ' Reforming Catalyst and
| § UTRC/UNDEERC | Process Development
S |
I's y : ] 4
13 Reactor and System modeling -
> Energy and Economic Analysis < 4.: \ 4
Thermodynamic __— L VASP

Information

Cost Analysis,
Vendor Quotes

Proof of Concept Demonstration

Material Specification

Literature Data

\ 4

UTRC UTRC/UNDEERC
Prototype 4_ Cesman A 4
Testing m.ssusaadq Prototype System
Fabrication

Hydrolysis
product

UTRC/UNDEERC

-....>

Real system catalyst

A

Testing

Prototype System Testing




Approach: Initial Process Inputs and Outputs

> Sulfuric acid>
> Water/Steam
J A 4

> Conditioner j

> Feed Stock » Feed Handling ————» Acid Hydrolysis ——» Sugar Reforming—

A
> Recycle Water T I > Recycle Cat >\_T
> Recycle Cond >—
Catal
T, > Recycle Acid > @ X

< Gases <_t ] Flash  |&———
@— Burner T

] %_ Fuel Catalytic |

Pd Membrane
Separator Fuel
Gas

(N

Gas Oxidation

g g



Approach: Experimental Design to Optimize Hydrolysis

» Overall efficiency depends on optimizing hydrolysis energy / acid requirements
- Lower acid concentration
+ Less expensive alloys etc.
+ Higher SA & activity reforming catalysts = smaller reforming reactors
+ Less unnecessary chemical degradation = higher H, yield
- Lower Temperature
+ Increased residence time thus larger volumes and increased costs
+ Lower autogenous steam pressures = lower capital costs
+ Less expensive alloys etc.
+ Less dehydrogenation etc. = higher H, yields
« Poplar assumed to be initial feed; grinding energy similar to mechanical pulping

e Input data for refined economic and efficiency model

0—4000-psi EERC CA14568.CDR
Pressure To Vent

Transducer
Gas Pressure
Supply Relief Valve
Valve
1-gal 0-5000-psi
Stirred Gauge
Autoclave
Liquid Temp. A Throttling
iqui :
Valve
Inlet Ball
|—>T0 Vent
Valve
Overflow Vessel
Gas Hydroclone
Cylinder

To Ven1<—|

Underflow Vessel




Nano-Engineered Noble Metal / Doped Metal Oxide Catalyst

Design & synthesize active oxide structure to maximize accessible sites/vol.

Nanoparticle (< 3.5 nm) Micropore (=5 nm)

MacroPores

Conceptual Porous Metal-Oxide Framework
Shown in 2D

Fractal
Morphology

Log Differential Intrusion (mL/g)
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Pore Structure
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Self assembly used to create high surface
area, large pore thermally stable active oxide
support with 100% dispersed 2 wt% Pt based
mixed metal clusters

Low Temperature

Conceptual Structure Realized

100% Dispersed

Reducibility Noble Metal
71 C Pt / Ce0.582r0.42027 " OXId e fow bt
M
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UTRC Catalyst Discovery Approach

Atomistic catalyst design, synthesis, characterization, reaction studies & kinetic analysis

Conceptual Catalyst Design Catalyst Synthesis Quantum Mechanical Atomistic
Modeling for advanced catalyst design

(N o %
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Nanocrystalline structure St e e e SR
~100% NM dispersion

Characterization Kinetic Expressions Derived Superior Performance
From Reaction Data 594CO0, 33,0, 105%CO,, 30

Total flow: 2.6 L/min; 0.5 cc catalyst

-fCataIyst B
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iCatalyst A ‘ ‘ ‘ ‘ ‘
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Predicted Value

4000 3000 2000 1000
Wavenumbers (cm™)

1V



VASP Modeling Insights Led To Better Catalysts

Calculated Coupled Enthalpies
Dp,Ce15.4y)ZryO2s = DP,C15 (1) 21, Op3 + O
H,+O >H,0 CO+0 > CO,
Oxide Slab kJ/Mole kJ/Mole
TaCeyzZr;0,, 7.2 9.6
MoCeyZr:0,, 48.3 -19.3
80 ——r—r———————————————————————
; . Pt/Mo Doped CeZrOx g’
T = 200°C (CO+H,0+H,+N,) ® g ’ |2 oL P \ :
: P=2atm  (30% 30% 34% 6%) <53 N §603 o
1 D E I ° v oW
1 Pt/Ceq 6252 g3251- 80,0505 0 >} v
i o T 0©
(F $ 40
= S @ 3 % E % :
1 r v i
g S B g o Pt/CeZrOx |
8—'w -~ ~~ — o [ 68 7’7 1
2_5 © | Z20] ° g ® Pt/Mo,,Ce,Zr,, 173 m?g
! = O PtMo,,Ce,Zr,, 191m?g
1 Pt/Ceq 7241 ,M0g 4,0, 2 10 %’ g v PU Ce,eZr,, 187 m?g Run 2 |
! Q : v PY Ceq 2l 187 m’/g Run 1 |
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5 ' ' ' ' ' ' ' ‘ ' ‘ ' ' ' Temp C, Initial Down Ramp 4.9% CO, 10.5%CO,, 33%H,0, 30.3%H,
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Higher Activity Catalyst w Similar Pt & SA
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Xylose Adsorbs More Strongly Than Xylitol on Pt(111)

Aldehyde O forms stronger bond than terminal alcohol O

Xylose/Pt(111) 2B svlitolPi(111)

Binding Energy = -92 kJ/mole Binding Energy = -65 kJ/mole

12
Negative binding energy indicates exothermic process



Ce Dopant in TiIO, Decreases H,S-Pt Binding 16%

 Early results for Pt raft system, before full relaxation
e Anatase (101) TiO, with and without Ce

Pt(111),,, /AnataseTiO,(101)  Pt(111),,,/4.2a% Ce_Anatase_TiO,(101)
Binding Energy -106.53 kJ/mole Binding Energy -89.50 kJ/mole

OTi Pt Ce
13



Oxide Dopant Shifts Pt & S DOS to Higher Energy

— s orbital = p orbital = d orbital = forbital
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Progress: Conceptual Process Flow Diagram

I
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Progress: Current HYSYS Process Flow Diagram
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Future Work

 FY 2005:

— Initial feasibility analysis of a 2000 ton/day (dry) plant design showing a viable
path towards the DOE’s 2010 efficiency (50% LHV) and cost ($1.75/kg H.,)

targets.
— Low-level construction of catalyst synthesis & testing infrastructure

e FY 2006:

— Is there a preliminary 2000 ton/day (dry) biomass plant design that could reach
the DOE'’s 2010 efficiency (50% LHV) and cost ($1.75/kg H.) targets?

— GO/NO GO decision.

— Demonstrate an acid tolerant, model sugar solution reforming catalyst
+ Promising kinetics and selectivity
+ Path for cost-effective scale up (mass production) exists

— ldentify preliminary hydrolysis conditions at UND-EERC and hydrolyzed product
chemical composition and physical properties

17



Future Work
e FY 2007:

— Demonstrate effective hydrolysis conditions for actual biomass system
and a path to scale-up for a viable plant design

— Demonstrate in the lab a potentially long lived, cost effective liquid phase biomass slurry reforming
catalyst giving ~0.1 moles H,/Total Pt equivalent-second

— Demonstrate that a plant designed with experimentally determined hydrolysis and reforming rates
and conditions meets 50% LHV efficiency and $1.75 /kg H,

— Demonstrate wash coating of active catalyst on to selected support

e FY 2008:

— ldentify optimum hydrolysis conditions

— Demonstrate wash-coated reforming catalyst with actual hydrolyzed biomass

— Design, build, test and deliver proto-type continuous micro-scale reforming reactor to UND-EERC
— Complete 500 hrs of reformer operation and collect data important to full scale pilot unit design

— Estimate H,/kg cost and LHV efficiency using 2000 T/day plant design finalized with actual batch
hydrolysis and continuous micro-scale reforming reactor data.
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Hydrogen Safety

The most significant hydrogen hazard associated
with this concept is the 10% H, content of the
up to 2000 psig process gas.
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Hydrogen Safety

Our Approach to deal with the hazard
In the laboratory Is:

* H,/Flammable gas detectors and ventilation interlock
- System alarms if > 10% LFL (0.4% H,) detected
- All heater power and flammable gas flows shut off if
either >25% of lower flammable limit (1% H,) detected,
or drop in ventilation rate
- System design limits flammable gas flows to <10% of

lower flammable limit based on measured ventilation
rate

20



Hydrogen Safety

Our Approach to deal with the hazard in the
proposed micro-scale demonstration unit Is:

* Multiple H,/Flammable gas detectors

« System alarms if >10% LFL (0.4% H,) detected

 All heater power and flammable gas flows shut off if
>25% of lower flammable limit (1.0% H.,) detected at unit.

* N, purging of all potential sources of ignition
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