

System Level Analysis of Hydrogen Storage Options

R. K. Ahluwalia, J-C Peng, and R. Kumar

This presentation does not contain any proprietary or confidential information

Project ID: ST20

Argonne National Laboratory

A U.S. Department of Energy Laboratory Operated by The University of Chicago

Overview

Timeline

- Start date: Oct 2004
- Project end date: Sep 2009
- Percent complete: 20%

Budget

New Project in FY 2005

• FY '05: \$250 K

Barriers

- Addresses H₂ Storage Technical Barriers:
 - A: Cost
 - B: Weight and Volume
 - C: Efficiency
 - E: Refueling Time
 - M: Hydrogen Capacity and Reversibility
 - Q: Thermal Management
 - R: Regeneration Processes
 - T: Heat Removal

Interactions

- FreedomCAR Technical Team
- Hydrogen Storage Analysis Working Group
- TIAX, UTRC, SNL, other Labs

Objectives and Approach

Objectives:

Working with DOE contractors and Center researchers:

- Model various developmental hydrogen storage systems
- Analyze hybrid systems that combine features of more than one concept
- Develop models "reverse-engineer" particular approaches
- Identify interface issues and opportunities, and data needs for technology development

Approach:

- Develop thermodynamic and kinetic models of processes in complex metal, carbon, and chemical hydrogen storage systems
- Assess improvements needed in materials properties and system configurations to achieve H₂ storage targets

Current activities

1. NaAlH₄ systems

- Adapted from TIAX and constrained to satisfy targets for:
 - amount of recoverable H₂ (5.6 kg)
 - discharge rate (1.6 g/s)
 - refueling rate (0.5 to 1.5 kg/min)
 - H₂ delivery pressure (FC: 8, 3 atm; ICE: 10, 35 atm)

2. Activated carbon, low T/ medium P, systems

- Temperature, pressure, and operating conditions needed to meet near-term and long-term targets

Availability of fuel cell waste heat limits consideration to low-temperature hydride storage

Medium-Temperature Hydride (MTMH)

- H₂ desorption T > stack coolant T
- Must burn H_2 to liberate H_2 from MTMH.
- 18-25% penalty in system efficiency

Low-Temperature Hydride (LTMH)

- H₂ desorption T < stack coolant T
- Waste heat to liberate H₂ from LTMH.
- Reduction in radiator heat duty

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Developed GCtool model for sodium alanate system

- NaAlH₄-Na₃AlH₆ thermodynamics
- Successfully fitted SNL data to first-order kinetics for charging & discharging
- Transient thermal model for HT fluid, HXT, foam, hydride media, liner, carbon fiber (CF), glass fiber (GF), and insulation
- Hydrogen pressures and flow rates

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Sodium alanate system characteristics

Discharge H₂ using stack coolant at 115°C

- Minimum tank pressure = 3 to 8 bar
- H₂ capacity limited to only the first dehydriding step, i.e., 3.7%, because equilibrium pressure of H₂ for Na₃AlH₆ dissociation is only 1.7 bar at 115°C
- Under transient conditions, tank can reach a maximum pressure of 24.4 bar

Charge H₂ at 100 bar

- Limit MH temperature to 165°C as equilibrium pressure of H₂ for re-forming NaAlH₄ is 100 bar at 169.4°C
- 104 MJ cooling load for charging 5.6 kg H₂, 173 kW avg (10-min refueling); ~1 MW max

Key design constraints

- 1. First-order sorption kinetics limit
 - minimum state-of-charge to be able to provide full flow of H₂ (0.02 g/s per kW)
 - maximum state-of-charge to permit acceptable refueling rates (0.5 to 1.5 kg/min)
 - recoverable amount of H₂ (the difference)
- 2. Heat removal during tank filling determines the heat transfer area (number of tubes)
 - 165°C max temperature for 100-bar fill pressure
 - tube-to-foam contact resistance is significant
 - 100-105°C coolant temperature, not too low (poor kinetics), not too hot (poor heat transfer)

Base Case: Reference Kinetics, 4% TiCl₃, L/D=2

- SOC: min = 40.4%, max = 95%, range = 54.6%
- Recoverable H₂ in MH media = 1.4 wt%
- 0.99 kg/min refueling rate
- Number of heat transfer tubes = 258, Peak Q = 993 kW
- Recoverable H_2 in tank = 0.7 wt%

	Weight (kg)	Volume (L)
Metal Hydride Media	400	500
AI Foam	56	521
Heat Transfer Tubes	186	68
Liner	63	8
Carbon Fiber	16	10
Glass Fiber	21	10
Total	812	656

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Increased desorption kinetics would help, but not enough

- 10X enhancement in desorption kinetics can yield 90% recoverable $\rm H_2$
- Refueling rate target is satisfied
- Energy density and specific energy still too low

		Desc	DOE 2007		
	1X	5X	10X	Target	
Recoverable H ₂ in NaAlH ₄	%	54.6	82.7	88.4	90
SOC, Min/Max	%	40.4/95	12.3/95	6.6/95	
H ₂ Refueling Rate	g/min	990	860	840	500
Weight of MH	kg	400	264	247	
Tank Weight	kg	813	613	588	125
Tank Volume	L	656	457	431	155
Recoverable H ₂ in MH	kg H_2/kg %	1.4	2.1	2.3	
Recoverable H ₂ in Tank	kg H ₂ /kg %	0.7	0.9	1.0	4.5
Specific Energy	kWh/kg	0.23	0.30	0.32	1.5
Energy Density	kWh/L	0.28	0.41	0.43	1.2

Heat transfer needs to be improved

 In addition to high kinetics, 10X decrease in contact resistance between AI foam and HX tubes, and AI-alloy vs. SS, help but still not enough

10X Desorption	on Kinetics	1X h _c	10X h _c	10X h _c	DOE 2007
	SS HX	SS HX	AI HX	Target	
Recoverable H ₂ in NaAlH ₄	%	87.9	88.4	88.4	90
SOC, Min/Max	%	7.1/95	6.6/95	6.6/95	
H ₂ Refueling Rate	g/min	840	840	840	500
Number of HX Tubes		280	175	166	
Weight of MH	kg	192	191	191	
Tank Weight	kg	506	421	328	125
Tank Volume	L	350	323	321	155
Recoverable H ₂ in MH	kg H ₂ /kg %	2.9	2.9	2.9	
Recoverable H ₂ in Tank	kg H ₂ /kg %	1.1	1.3	1.7	4.5
Specific Energy	kWh/kg	0.37	0.44	0.57	1.5
Energy Density	kWh/L	0.53	0.58	0.58	1.2

Summary: Sodium Alanate System

- To avoid excessive efficiency penalty, can only consider LTMH configuration with 120°C fuel cell operating temperature
- 2nd dehydogenation step does not occur at 115°C
- Need <a>10X enhancement in desorption kinetics to achieve <a>90% H₂ recovery
- Removing inerts from sorption media reduces MH weight by 25%
- Heat transfer subsystem size and mass dictated by
 - cooling during refueling
 - contact resistance (reduce by >10X ?)
- Faster refueling reduces recoverable hydrogen

Activated carbon system model

- Ono-Kondo theory for adsorption isotherms using model parameters derived by Benard et al.
- Peng-Robinson equation of state for H₂

$$\rho_s = N_{ads}\rho_b + \left(1 - \frac{\rho_b}{\rho_c}\right)\rho_g$$

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Preliminary Results H₂ storage density of AX-21 carbon

Increase in storage density with AC, $\Delta \rho_s$, depends on P & T

- At 77 K, $\Delta \rho_s$ = 423% at 10 bar, 28% at 100 bar
- At 150 K, $\Delta \rho_s$ = 202% at 10 bar, 40% at 100 bar

Even w/o enclosure, $\rho_s > 36$ kg/m³ only at 77 K, P > 65 bar

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Preliminary Results Temperature swing can facilitate H₂ recovery

Improvement in recoverable H_2 fraction (Φ) with 50-K T swing.

- At 77 K, *Φ* improves to 63% from 6.5% at △P = 2 bar, and to 85% from 63% at 92 bar.
- At 150 K, Φ improves to 60% from 15% at $\Delta P = 2$ bar, and to 91% from 81% at 92 bar.

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Preliminary Results Weight and volume of 150 K system

- At 150 K, AX-21 may not meet either the 4.5 wt% target or the 36 kg/m³ target.
- With 50-K T swing, the 4.5 wt% target may be met at P > 100 bar, $P_{min} < 4$ bar.

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

U.S. Department of Energy

Energy Efficiency

and Renewable Energy

Preliminary Results Engineered carbons may meet near-term targets

- AX-21: 300 kg/m³ bulk density
- Densified AX-21: 700 kg/m³ bulk density
- EAC-07: engineered activated carbon may meet targets

	D)evel	opment	effort:	1	< 2	< 3	<	4	<	5	<	6.	
--	---	-------	--------	---------	---	-----	-----	---	---	---	---	---	----	--

Т	Р	ΔT	AX	-21	Densified AX-21		EAC	C-07
(K)	(bar)	(K)	wt% H ₂	kg/m ³	wt% H ₂	kg/m ³	wt% H ₂	kg/m ³
77	50	0	3.2	11.6	1.6	10.6		
77	50	50	5.0	19.5	3.2	23.0	4.5 ²	36
77	100	0	5.4	21.7	2.5	17.4		
77	100	50	7.1	29.6	4.1	29.9	4.5 ¹	36
150	50	0	2.3	8.1	1.4	9.4	4.5 ⁶	36
150	50	50	2.8	10.0	1.8	12.4	4.5 ⁵	36
150	100	0	3.9	14.9	2.2	15.8	4 .5 ⁴	36
150	100	50	4.3	16.8	2.6	18.8	4 .5 ³	36

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Preliminary Results Summary: Activated Carbon Systems

Commercial Activated Carbon at 77 K:

- Potential to meet the 4.5 wt% target isothermally at P = 60-75 bar
- Highest storage density is 30 kg/m³ with $\Delta T = 50$ K Commercial Activated Carbon at 150 K:
- Need $\Delta T > 50 \text{ K \& } \Delta P > 96 \text{ bar to meet the 4.5 wt\% target}$
- Highest storage density is 20 kg/m³

Engineered Activated Carbon:

- At 77 K, T swing may be needed to meet the weight and volume targets at 100 bar
- At 150 K, may meet the targets isothermally at 50-100 bar On-going work to define cooling/heating needs, dormancy and boil-off

Next Steps

- Verify capacity data (tank only vs. storage medium)
- Verify sorption kinetic data
- Conduct sensitivity analysis, including coupled parameters
- Develop a modeling tool that materials developers can use to determine properties needed to meet storage targets
- Analysis of chemical hydrogen storage systems life cycle efficiency

FY 2005 milestones and progress

- Working with TIAX, UTRC, Centers of Excellence, etc., develop specific tasks for the ANL analysis project (01/05)
 - Following discussions with individual researchers, conducted first working group meeting; presented preliminary analyses and obtained feedback for continued work
- Determine preliminary gravimetric and volumetric capacities of hybrid (low temperature/high pressure/adsorbent concepts) approaches (07/05)
 - Have initiated hybrid system analyses preliminary results are presented here
- Develop storage system and interface models, (09/05)
 - Activity is getting underway

- Funding from the U.S. Department of Energy, Energy Efficiency, Renewable Energy: Hydrogen, Fuel Cells, and Infrastructure Technologies Program is gratefully acknowledged
- DOE Technology Development Managers

Hydrogen safety

• This is an analytical and computer modeling project. There are no hydrogen safety issues involved.

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Preliminary Results Weight and volume distribution

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

