APPLIED HYDROGEN

Hydrogen Storage Air Conditioning Energy Storage

Conductive Hydrogen Packaging

Scope of the Project

Safe & Environment friendly hydrogen applications

- Hydrogen Fuel Storage for Utilities, for Vehicles and for Merchant Delivery
- Freon free Air Conditioners and Coolers optionally using Waste heat

Energy Storage, UPS, including renewable

Fast Kinetics - High Efficiency

Business Opportunity

The scene is ripe for an advanced H2 storage device that can fill the GAP in:

- o Onboard Storage for Vehicles
- o Merchant Hydrogen Delivery
- Renewable energy Storage (wind, solar, off peak).
- o Emergency Power supply (UPS)
- Freon free cooling.
- o Saves Energy
- o decreases carbon footprint of vehicles

These are huge markets are now looking for – our solution – SAFE Hydrogen Storage

?Who Needs Hydrogen

- Hydrogen is clean.
- Hydrogen is renewable
- Hydrogen has high energy density
- Hydrogen has many applications
- Hydrogen is already a huge Industry
- Hydrogen storage is still the challenge.

No Hydrogen Economy without Hydrogen Storage

Main Product Lines

د د و و و و از د و و و و و و و و و و و و و و و و و و

Hydrogen StorageHydrogen Cooling

H2 Storage Market

- Industrial and merchant H2 storage 2% efficiency within 18 months, to replace H2 bottles, trucks, etc. market worth over 10\$Bln, [400\$*(20,000,000*0.1*10days)/0.71]
- 2 Off-peak power storage: wind, solar, electric power, etc. (up to 20% of all electric power)
- 3 Emergency Power Supplies UPS, over 50,000,000 already in place, from single PC to IT centers to Hospitals, etc.
- Vehicular Onboard Storage 4.5% efficiency @500\$/kgH2
 within 36 months. Market size huge, even if not immediate

Merchant Hydrogen

- Merchant H2 market is already huge: 5000 T/d merchant H2 in the US alone, 20,000 worldwide (abt 20% of all H2 produced)
- Main uses: Refineries 45%, Ammonia production 28%, (mostly captive)
- other: metals, electronics, food, military (space), etc.
- Growing uses: Clean Energy Vehicles, Wind, Solar, Intermittent Power storage.

Merchant Hydrogen Competition

- Today, 92% of hydrogen is compressed gas, 8% liquid.
- Industrial use gas transported in 150-360 atm bottles: ~0.56 kg in 101 kg steel bottles costing 400\$ ea. and special trucks.
- Least expensive transport: pipelines (high pressure, very expensive, with hydrogen embrittlement issues).
- Onboard Vehicular: Carbon and Al Composite, fragile, expensive at 2000\$/kg H2
- Powder hydrides slow desorption, short lifecycle, not accepted in industrial environment.
- Most important issue: SAFETY
- H2 cost <2\$US/kg (@pipeline)

Market Size

Availability	Size [\$Bln]	Segment	Product
5-10 yrs Bln, very recognizable	>\$2	Vehicles	Onboard Storage
Now, Bln, very Conservative	>\$1	Merchant H ₂	Transportable St.
Now,	>\$2	UPS	Transportable St.
3-5 yrs, Price sensitive	>\$10	Energy	Static

Time to market

Major Sales	Initial sales	Added value	Product
5 years	2 years	20-40%	Onboard Storage
3 yrs	18 m	20- 40%	Transportable St.
3 yrs	18 m	20-40%	Transportable St.
4 yrs	2 yrs	10-30%	Static

Cooling Applications

COOL HYDROGEN Freon free

Air Conditioning (optionally using solar heat) Chip level cooling Computers, IT Centers Food (industrial, entertainment (beer) home)

Target Markets: Summary

- Vehicular Air Conditioning 700 million vehicles running worldwide, about 70,000,000 produced annually, 20% with AC
- 2 Green Home and Office Air Conditioning Green, no Freon pollution, optionally based on solar energy, cogeneration or waste heat from other processes
- 3 Cooling for Home and Industry, optionally based on solar energy, cogeneration or waste heat from other processes

Competition

- Existent Freon AC Freon is on its way out
- Compressor based and other MHAC, tested by GM and FIAT – working, but sluggish and expensive, see model
- Ammonia Cooling Polluting, Smelly, Toxic
- Other cooling methods such as magnetic cooling still in basic R&D, low COP, cannot use waste heat.

Market

Time to Market	Size [\$Bln]	Market	Product
3-5 years	>10	vehicles	Vehicular Air Conditioning
2-4	>>	Beer, Computers, components	Special cooling
2-4	>>>>	Home and Industrial	Green Cooling

Business Model Development

- 1 Demonstrate commercial feasibility.
- 2 Develop marketable product
- 3 Demonstrate Industrial strength capability
- 4 Form Strategic Alliances with Manufacturers
- 5 Develop pilot line production
- 6 License Large Scale Production
- 7 Keep critical material production and continued development capability

Where are we

Basic R&D Completed: small material quantity produced and tested, IP Protected

Strategic Alliance with TATA Motors Approved

 Additional Alliances Underway: MRI (NREL), Dantherm, h2logic, UTRC, etc.

Support from EU, underway (BIRD F possible)

Time to Market

	Timeline	Mile Stone		
	6-9 months	Commercial prototype		
	18 months	Commercially acceptable product		
	24 months	Pilot Production and Start of sales		
	36 months	Start of large series industrial production		

Investment Needed

Disruptive Technology

The Products

- How do they work
- Advantages

Onboard Storage Paradigm Shift

Present Concept

Integrated UHP 5000 psi tank

Major SAFETY concerns

Volumetric inefficiency.

Exorbitant Infrastructure

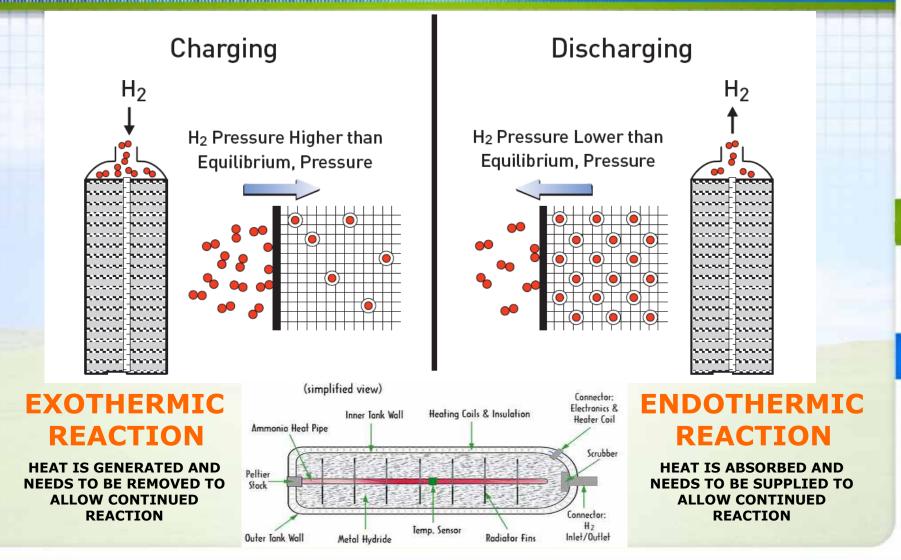
No upscaleability

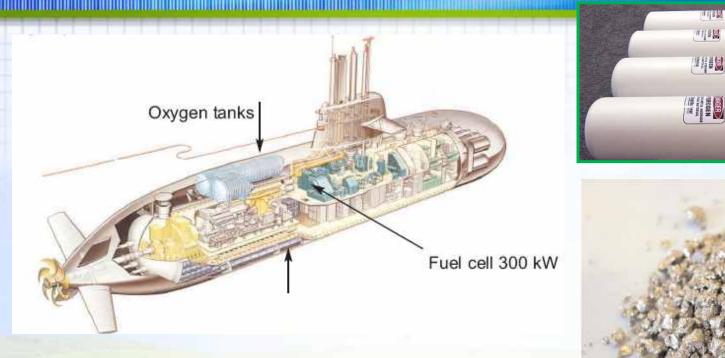
AH New Paradigm

SAFE Solid Hydride – Solid, low pressure, low volume.

RAPID refueling using recyclable cassettes,

LOW Distribution Cost




Hydrogen Storage Alternatives

 Unsafe - Explosive tendency 	Compressed
 Requires huge tanks or super 	Hydrogen Gas
high pressure	nyurugen das
 Not energy efficient 	Liquofied
 Unstable – Explosive 	Liquefied
tendency	Hydrogen
✓ Safer (even relative to	
gasoline)	
Volume Efficient - At less	"Solid Hydrogen"
than 200 psi, Solid Hydride	
storage 3-5 times lower	as HYDRIDE
volume than compressed gas	
at 10,000 psi	

HEAT TRANSFER IS CRITICALLY INVOLVED

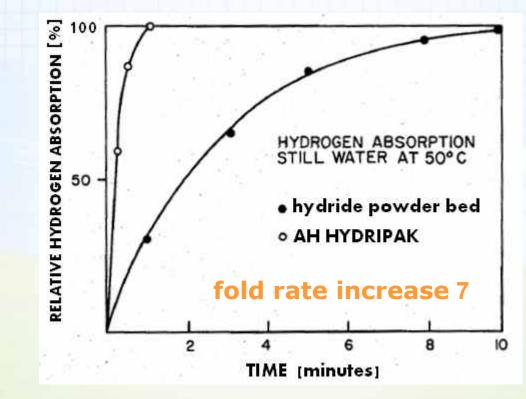
Hydride based Hydrogen Containment !IS commercially available

Ovonics, HBank, GfE, JMC, YM, APFCT, GKSS

SLOW release rate and SLOW refill due to low conductivity of powder bed (see table) preclude usable industrial acceptance Problem

Opportunity: The Conductive Storage Solution

Applied Hydrogen HYDRIPAK provides HIGH HEAT .CONDUCTIVITY due to Metallic structural support


AH Porous metal support provides 10 times more conductivity than standard hydride containers.

	K _{pb} (Heat Conductivity) [W/m.K]	Matrix type
Limits all Heat transfer processes	~0.1	Present - Hydride powder bed
	~10	Solid metal – Aluminum, Copper
Depending on conductive fraction content	1-10	APPLIED HYDROGEN microPorous Metallic Sinter

Compact microstructure developed

Hydride 10 µm

Results show 3-10 times faster H₂ absorption

Hydride Air Conditioner

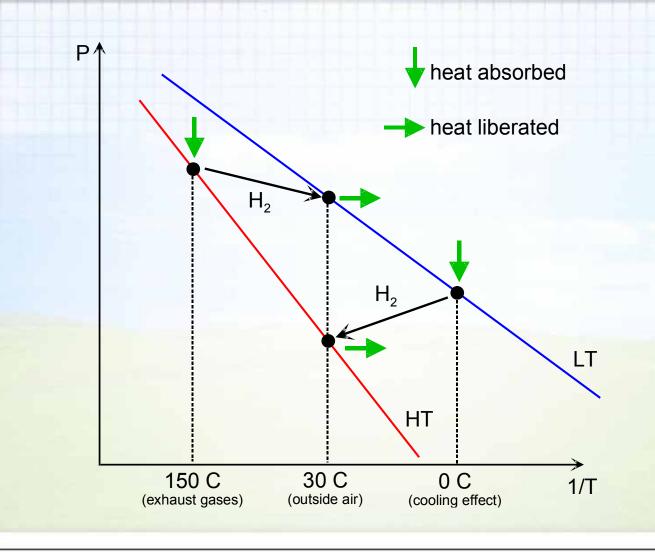
for Vehicles, using Exhaust Waste Heat Freon Free

Paradigm Shift

AH New Paradigm	Present Concept
Hydride Air Conditioner	Over 100 million
NO Freon – NO pollution	Vehicle Air Conditioners using Polluting Freon,
SAVE Fuel - Using Waste Exhaust Heat	spending up to 20% shaft power

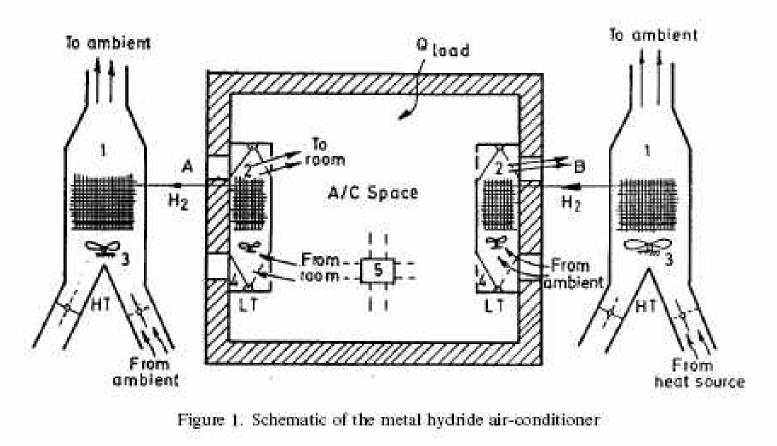
Hydride Air Conditioner

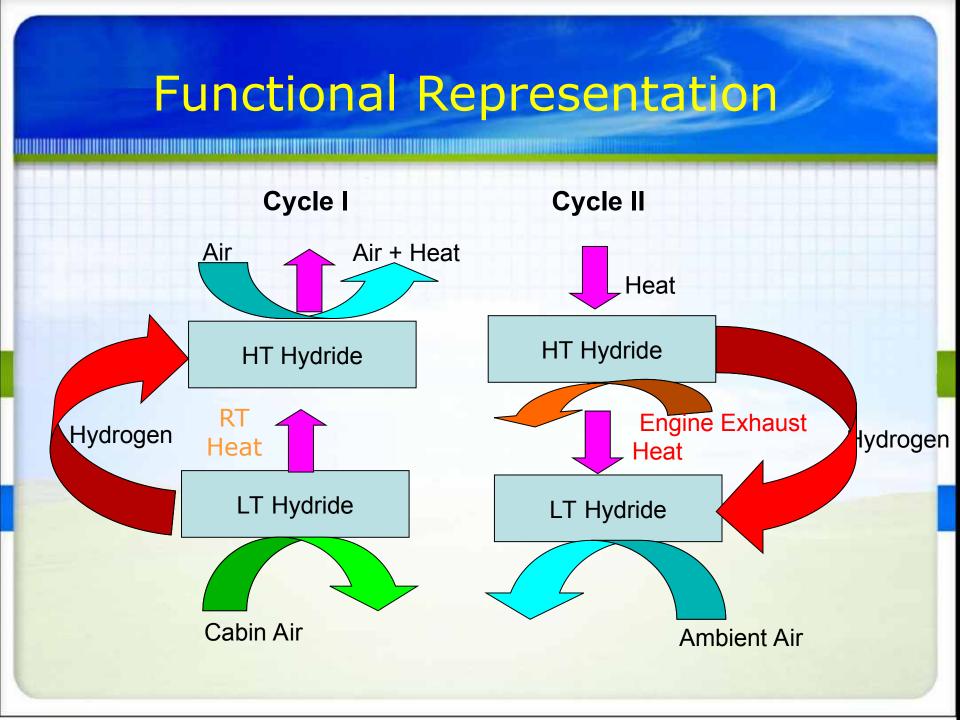
- Hydrides are Hydrogen Containing Compounds, many based on metals (MH – Metal Hydride)
- When Hydrogen is absorbed, energy is liberated (exothermic), pressure is lowered


HYDRIDE HEATS UP - Me+H₂ \rightarrow MeH_n+Q

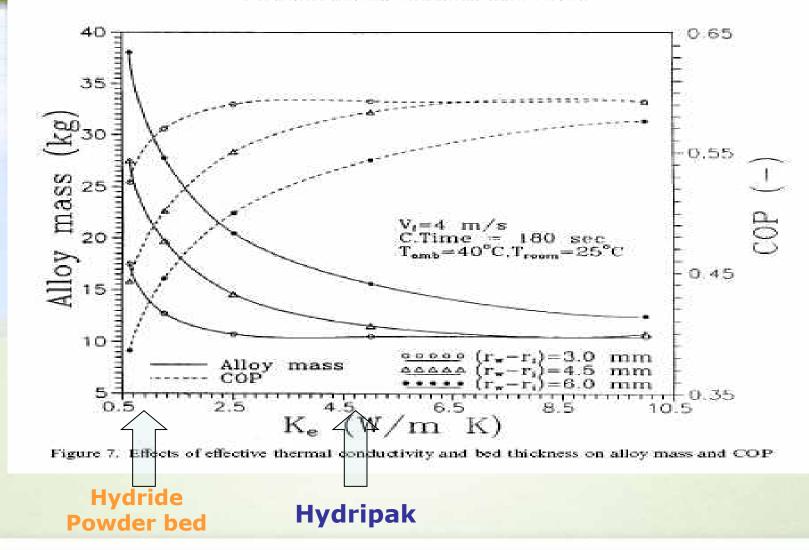
 When Hydrogen is released, energy is absorbed (endothermic) pressure grows

HYDRIDE COOLS \rightarrow Me+H₂-Q \leftarrow MeH_n


We can use cycle to make a HEAT PUMP


Physics of Operation

Schematic of Operation


METAL HYDRIDE AIR-CONDITIONER

Model Analysis of Operation

METAL HYDRIDE AIR-CONDITIONER

Status of Project

- Basic research completed, lab quantity of material produced and tested
- Procedure for production developed
- MHAC model of operation fully developed and partially tested
- Team ready
- IP protected
- Contact with Vehicle manufacturers ongoing

AH Response to CHALLENGE

SAFER, FASTER, MORE EFFICIENT, ADAPTABLE HYDRIDE PACKAGING

- Faster: Hydripak releases Hydrogen 10 times faster than hydride powder bed due to much better heat conductivity.
- Dimensional Stability provides long cycling life
- Safer (incomparable to gas, better than standard hydrides)
- **Lighter**, due to more efficient structure (solid vs pressure vessel construction)
- Low maintenance cost: powder clogging is prevented
- Shape efficient (non-cylindrical form possible)
- Adaptable future hydrides will be accommodated, with lower cost and higher efficiency.

Ρ

Patent pending

- AH builds on existent basic demonstrated solution – M.Ron patents (exhausted)
- AH adds critical dimensions to the present knowledge by pending patents that cover:
 - Improved substrate materials
 - Improved active material such as nanomaterials
 - Optimized production procedure
 - Optimized tank structure
 - Distribution CONOPS

Our Team

Founder – Ido Shefler, ME, M.Sc.E, Colonel (res.)

- Expert in Vehicle Engineering military and civil
- Expert in Management of Technological projects In Israel and abroad.

Founder – Dr. Fredy Ornath, D.Sc. Materials Engineering

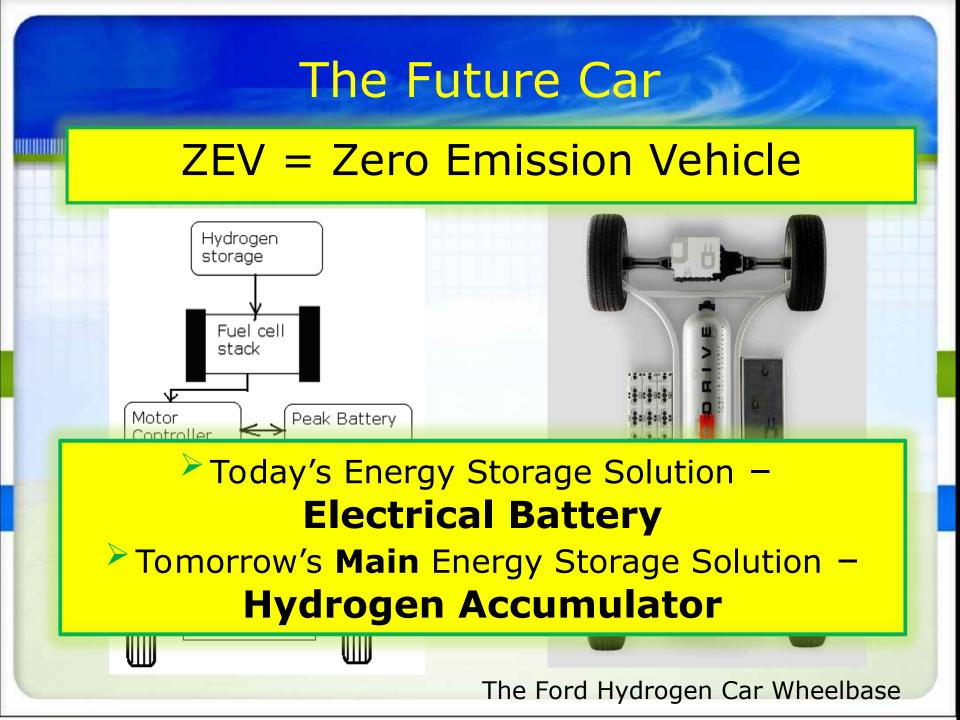
- Director & Founder of Material Systems Ltd.
- Founder of Traceguard Technologies Inc. (publicly traded in NY as TCGD.OB).

Our Team

Professor David E. Cole, Chairman, Center for Automotive Research in Ann Arbor, Michigan. He was formerly Director of the Office for the Study of Automotive Transportation (OSAT) at the University of Michigan Transportation Research Institute (UMTRI).

Prof. Eugene Rabkin - Materials Engineering,
Technion. Current research, improvement of hydrogen storage properties.
Continues R&D work based on Late Prof. M. Ron's

original pmh concept.

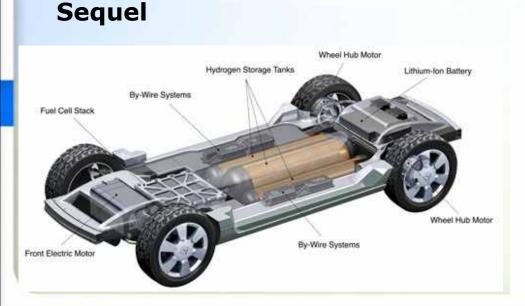

Summary

- Hydrogen is the fuel of choice and has large industrial market, but Storage is still the challenge
- Only Solid Hydride storage provides a workable solution, but has practical limitations
- Only HYDRIPAK enables hydride deployment
- Applied Hydrogen has The Team to transform HYDRIPAK into Successful Business
- COOLING is a great alternative application

Back up slides to clarify FAQ

- GM and other Zero Emission Vehicles
- National Hydrogen Storage Project Milestones
- Hydrogen Vs. Gasoline

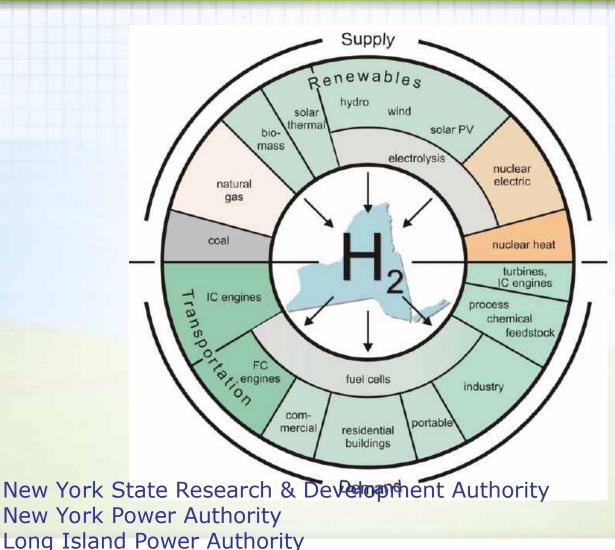
- Hydrogen vs Electrical
- Project Cost Model

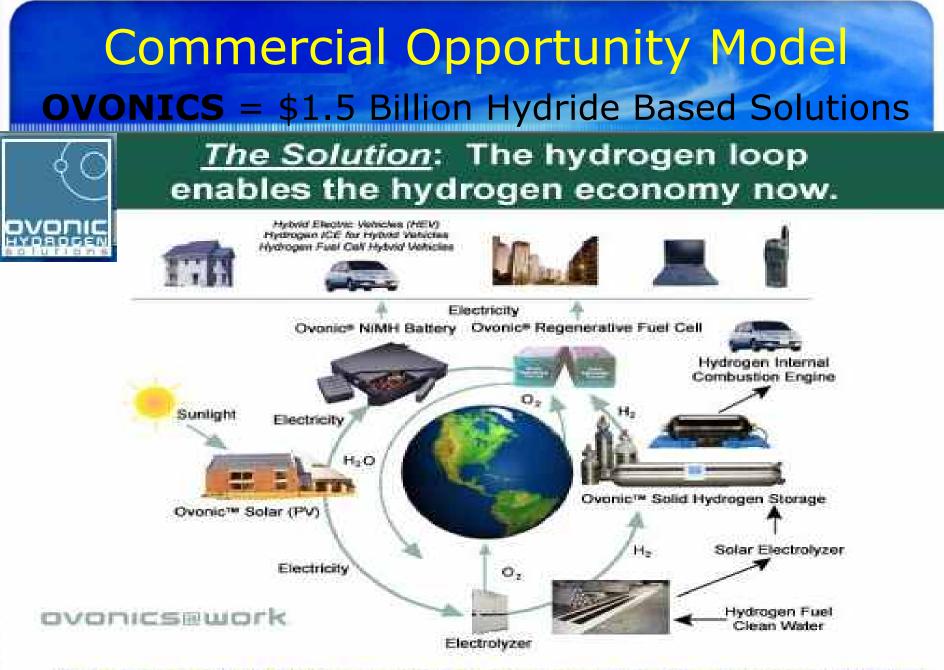

The GM Hydrogen Car

GM pledged to develop a hydrogen-fuel-cell vehicle that could compete on cost with traditional vehicles-if it were to be built in high volumes-by 2010.

Equinox

GM to support Hydrogen cars

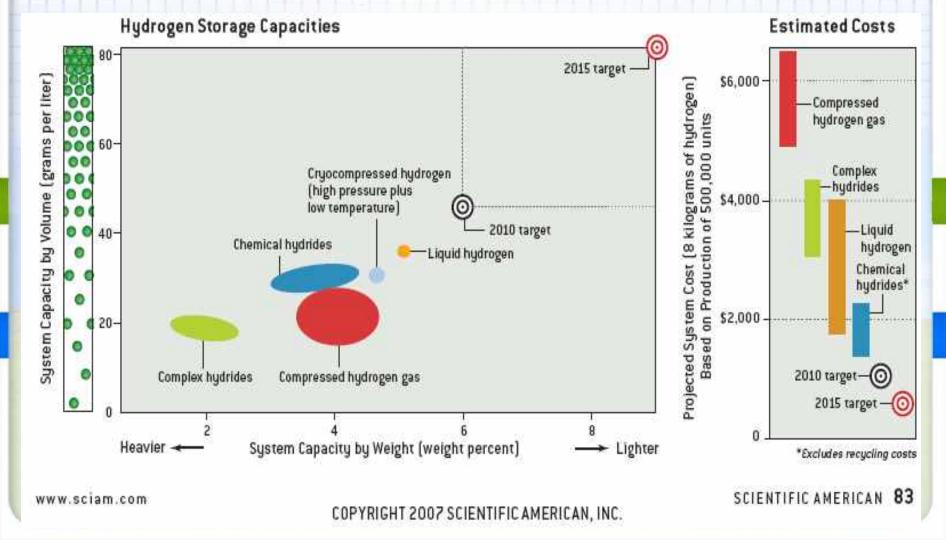

;On-board hydrogen storage in solid Home hydrogen refueling device (see also Honda) Develop collaboration with Shell



Hydrogen is America's National Priority

- President's Hydrogen Fuel Initiative: 4.9 Billion Dollars Budget over 5 years.
- Barack Obama's New Program includes support for Car Manufacturers will push for modernization and lower fuel costs.
- US Department of energy has established a "National Hydrogen Storage Project" to fund research and development.
- New York and California lead.

The NY H₂ Energy Economy Vision



Anything that burns can be replaced by hydrogen NOW.

Hydrogen Storage Expectations

ويعربه والاختياب والعام والمراج

Weight & Cost Synergy with President's Hydrogen Initiative

Total Cost [\$]	Matrix Cost [\$/kgm]	Hydride cost [\$/kgm]	Weigh		Year
\$13,972	5	50\$	364	2%	2007
\$1507	5	\$15	121	6%	2010
\$405	5	5\$	81	9%	2015

What others did: Competition Analysis

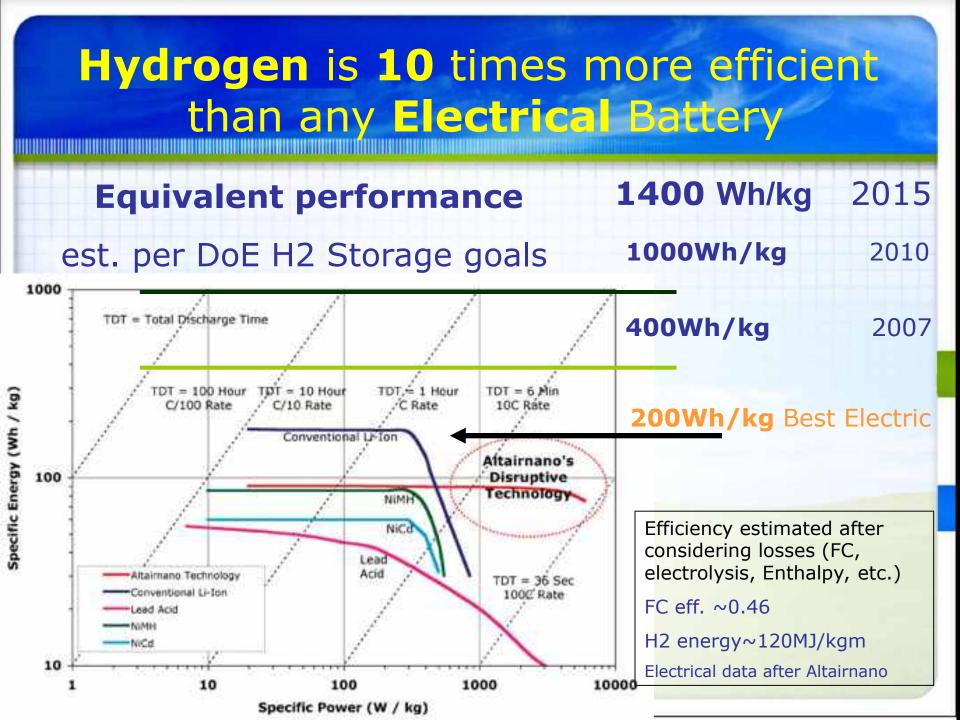
Status	Properties	Concept
Produced by Ovonics & others	Low conductivity, easy to produce	Powder bed
Limited Conductivity & structural stability, limited to RT	Conductivity not reported.	Polymer matrix (Congdon)
High parasitic weight, difficult to produce, not applicable at higher temperatures	High Conductivity, simpler production concept	Copper coated hydrides with low MP metal binder
Demonstrated capability and properties. Existent production concept	High conductivity, high structural stability, inexpensive base metal	Porous metallic hydride Al based

R&D Challenges

- Incorporation of nanomaterial hydrides. Existent R&D shows that nanosize improves kinetics, but powder bed still limited.
 Optimization of heat and gas transport.
- Optimization of structural design (shape).
- Optimization of work pressures and temperatures.
- Design of interface smart connector
- Intelligent Storage (Quantity, pressure, temperature sensing and reporting)

National Hydrogen Storage Milestones

Hydrogen Capacity / Weight Achievement		Milestone	Year
[Wh/kgm]	[w/%]		
300	Current ~2%	Select hydrogen storage options	2007
900	6 %	Develop and verify safe on-board storage systems	2010
1400	9 %	Develop and verify safe on-board storage systems	2015


Hydrogen vs. Gasoline

• Effective energy:

 Hydrogen has 7 times as much energy (per weight unit) as gasoline, but can be better than 10 times per km due to fuel cell's higher efficiency.

Cost balance:

- DOE research estimate hydrogen prices to drop lower than 2\$/kg in 10 years.
- Once hydrogen costs reach ~ 7\$/kg it will be as cheap as gasoline and absolutely clean.

