A review of potential hydrogen production and delivery costs

Dr A G Dutton

Energy Research Unit, CLRC Rutherford Appleton Laboratory

H2NET Hydrogen Energy Systems Wednesday 1 May 2002

A review of potential hydrogen production and delivery costs

- Introduction
- Hydrogen Production
 - Hydrogen Storage
- Hydrogen Transport and Distribution
- Hydrogen Systems and Economics
 - Conclusions

The Hydrogen Energy Economy - its long term role in greenhouse gas reduction

Project team:

J A Halliday, A G Dutton

Energy Research Unit, CLRC Rutherford Appleton Laboratory

W. J. Watson, J. Hertin

SPRU, University of Sussex

C A Nash, A L Bristow, M W Page

Institute for Transport Studies, University of Leeds

The Hydrogen Economy & the Tyndall Centre

Objective:

 to determine the potential contribution and viability of the hydrogen economy towards making changes in the UK energy mix in a manner that will significantly reduce carbon dioxide emissions

Phase I: Scoping studies

- Hydrogen Energy Technology
- Development of large technical systems
- Role of hydrogen in powering land transport Definition of parameters for Phase II

Phase II: Infrastructural requirements and long term prospects

The route to the hydrogen economy

Useful references & acknowledgements

Main sources

- Lakeman, J.B., Browning, D.J., DERA, Global Status of Hydrogen Research, ETSU F/03/00239/REP, 2001
- Padro, C.E.G., Putsche, V., Survey of the economics of hydrogen technologies, NREL Technical Report NREL/TP-570-27079, 1999
- Amos, W.A., Costs of storing and transporting hydrogen, NREL/TP-570-25106, November 1998
- Ogden, J.M., Prospects for building a hydrogen energy infrastructure, Annual Review Energy Environ. 1999, Vol. 24, 227-279
- UK Hydrogen Energy Network meetings

Hydrogen Production - Current status

Hydrogen is currently used almost exclusively as an industrial chemical

- ~500 billion Nm³ produced annually worldwide (Air Products is largest producer with > 50 plants, 7 pipeline systems totalling > 340 miles)
- 48% is produced by steam reforming of natural gas
- used for ammonia production, fertiliser manufacture, methanol production, refinery use for desulphurisation
- fuel for space exploration

Hydrogen Production - Processes (1)

- Steam methane reforming (SMR) of natural gas
- Partial oxidation (POX) or reformation of other carbon-based fuels
- Coal gasification (IGCC)
- Biomass gasification
- Pyrolysis
- Dissociation of methanol or ammonia
- Electrolysis of water
 - if the source of electricity is renewable energy then the net emissions of carbon dioxide are zero

Hydrogen Production - Processes (2)

- Biological photosynthesis or fermentation
- Hydrogen bromide electrolysis
- Hydrogen production during manufacture of chlorine
- Photoelectrolysis
- Reversible fuel cell

Hydrogen Production - SMR

REFORMING
$$CH_4 + H_20 \qquad 3H_2 + CO$$

$$880 \, ^{\circ}C$$

SHIFT
$$CO + H_2O H_2 + CO_2$$

Source: Air Products

Hydrogen Production - SMR

Tosco Martinez SMR, CA

Hydrogen Production - Pyrolysis

- Pyrolysis is the decomposition of hydrocarbons in the absence of oxygen
- Requires high T, endothermic process
- Methane "cracking" in presence of catalyst produces hydrogen and carbon black
- Kvaerner pilot plant since 1992, commercial plant started operation in Canada in 1999
- In principle, applicable to more complex hydrocarbons, biomass, and municipal solid waste

Hydrogen Production - Electrolysis of water

• Electrochemical water-splitting process:

$$H_2O \rightarrow H_2 + \frac{1}{2}O_2$$

- Commercial electrolysers typical efficiency 75%
- Operating pressures up to 50 bar (< high pressure cylinders) → need for additional compression
- Improve efficiency by operating at higher T
- Develop high pressure electrolysers

Hydrogen Production - SMR H₂ costs

Source: Air Products

Hydrogen Production - Economics (1)

Type of facility	Fuel/Hydrogen price (\$/GJ)
Petrol	3.5 (spot market \$20/barrel)
	7.9 (pre-tax)
	31.0 (70p/litre)
Natural gas	1.8 (ave. wellhead 1990-99)
	6.0 (wellhead Dec. 2000)
Steam methane reforming	5.4 (large plants) - 11.2 (small plants)
Partial oxidation	7.0 - 10.7
Coalgasification	9.9 - 11.6
Biomass gasification	8.7 - 13.1
Biomass pyrolysis	8.9 - 12.7
Methane pyrolysis	5.8 (C revenue) - 10.6 (No C revenue)
Steam methane reforming	$6.0 \text{ (no CO}_2 \text{ seq.)} - 7.5 \text{ (with CO}_2 \text{ seq.)}$
Wind-based electrolysis	11.0 (future 2010) - 20.2 (tech. 2000)
Solar-based electrolysis	24.8 (future 2010) - 41.8 (tech. 2000)

Sources: Padro & Putsche, 1999 & Author's estimates and other literature

Hydrogen Production - Economics (2)

- Mann et al. (1998) observe that economics of renewable powered electrolysis can be improved by:
 - use of off-peak electricity when wind/solar energy not available
 - sale of electricity from wind/solar energy during peak tarif times (i.e. suspend hydrogen production)
 - can improve economics by a factor of 2 (dependent on wind/solar regime, electricity tarifs, feed-in contracts, etc.)
- → Consider further under Phase 2 Transitions

Hydrogen Storage and Distribution

- Optimisation of storage system and distribution method depends on:
 - production rate (compressor/liquefaction plant size, operating costs)
 - storage time (overall capacity, hence unit size and cost)
 - infrastructure availability
 - distance to customer
 - end-use application (system pressure? liquid?)
 - capital costs
 - maintenance requirements
 - safety issues
- Centralised v local production of hydrogen

Hydrogen Storage

- Pressurised gas
 - underground chambers (e.g. depleted gas wells)
 - surface storage (conventional cylinders)
 - advanced high pressure composite cylinders
- Liquefied hydrogen
- Chemical (methanol, ammonia, etc.)
- Reversible metal hydride systems
- Carbon cryo-adsorption and nanotubes
- Transmission by pipeline

Hydrogen Storage

Technology	Specific developments	Targets
Automotive		6.5 wt% (US DOE)
applications		$62 \text{ kg H}_2 \text{ m}^{-3}$
Portable power systems		11.0 wt%
(military)		
Stationary systems		likely to be cost driven

Hydrogen Storage - Pressurised gas

- Conventional steel cylinders are heavy and bulky, 50 litre containers store compressed hydrogen at 200 bar (2.3 kWh/kg)
- Spherical pressure vessels for larger volumes
- Composite cylinder technology
 - inner aluminium or thermoplastic lining
 - glass or carbon fibre strengthening
 - lighter weight
 - pressures up to 350 bar (11.3 wt%), plans for 700 bar
 - additional compression cost
 - possible problems with filling speed

Hydrogen Storage - Liquefaction

- Energy intensive process (8.5 kWh/kg up to 13.0 kWh/kg for small plants)
- Magnetocaloric cooling may reduce liquefaction energy to 5.0 kWh/kg
- Requires efficient tank insulation to keep T ~ 20 K
- Sizes range from several litres to 3,800 m³
- Used by BMW Clean Fleet
- Boil-off rates around 3% per day have been achieved (no problem for frequent use)
- Liquid hydrogen Dewar is a comparatively cheap technology (c.f. pressure vessels)

Hydrogen Storage - Metal hydride systems

$$M + xH_2 \longrightarrow MH_{2x}$$

- Principle of operation:
 - hydrogen adsorbed at or below atmospheric pressure
 - constant "plateau pressure" between about 10% and 90% of ultimate storage capacity
 - hydrogen released at higher pressure when the hydride is heated (the higher the temperature, the higher the pressure)

Hydrogen Storage - Metal hydride systems

Conventional metal hydrides:

- Ambient temperature hydrides (FeTi, LaNi₅, typically < 2.0 wt%)
- Higher temperature hydrides (usually contain Mg, e.g. Mg₂Ni, can store up to 7.0 wt% but with slow kinetics)

Novel metal hydrides

- Sodium aluminium hydrides with titanium or zirconium catalyst, e.g. NaAlH₄, Na₃AlH₆ (again with slow kinetics, IEA target 5.0 wt%)
- Lithium beryllium hydride (reversible hydrogen capacity of almost 9.0 wt%, but requires T > 250 °C to achieve useful pressures)

Metal hydride systems - Likely developments

- Conventional metal hydrides:
 - Capacity improvement unlikely
 - Improve kinetics, cycle life, impurity tolerance, T of operation
- Novel metal hydrides
 - Sodium aluminium hydride
 - capacity improvement under development
 - improve kinetics
 - Lithium beryllium hydride
 - seek system with similar properties that works nearer ambient temperature

Hydrogen Storage - Carbon based systems

- Claims of storage efficiencies up to 50 wt.% (and even 65 wt.% in one case) seem to be unfounded
 - failure to replicate results in independent laboratories
 - original claims attributed to water contamination
 - only a few wt.% likely to be achieved in practice
- Work on carbon systems remains very popular and is continuing under IEA Hydrogen Agreement Annex 12

Hydrogen Storage

Hydrogen Storage - Economics (short term)

Facility size	References	Specific TCI	Hydrogen	
(GJ)		(\$/GJ)	price (\$/GJ)	
Compressed gas storage - short term (1-3 days)				
131		9,008	4.21	
130,600		1,726	1.53	
Liquefied hydrogen - short term (1-3 days)				
131		35,649	17.12	
130,600		3,235	5.26	
Metal hydride - short term (1-3 days)				
131		4,191	2.89	
130,600		18,372	7.46	
Underground hydrogen storage - short term (1 day)				
- 13-3- 8 - 3 3-3- 1	,		1.0-5.0	

Source: Amos 1998, Padro & Putsche 1999

Hydrogen Storage - Economics (long term)

Facility size	References	Specific TCI	Hydrogen	
(GJ)		(\$/GJ)	price (\$/GJ)	
Compressed gas storage - long term (30 days)				
3,900		3,235	36.93	
3.9 million		580	7.35	
Liquefied hydrogen - long term (30 days)				
3,900		1,687	22.81	
3.9 million		169	5.93	
Metal hydride -	Metal hydride - long term (30 days)			
3,900		18,372	205.31	
3.9 million		18,372	205.31	

Source: Amos 1998, Padro & Putsche 1999

Hydrogen Distribution and Transport

- Hydrogen is conventionally distributed in:
 - gaseous form cylinders or large pressure vessels
 - liquefied form by tanker
 - liquefied form by pipeline
- Large scale hydrogen pipeline distribution is feasible but is likely to be very expensive
- Existing natural gas pipeline network could be used:
 - dilution with H₂ by up to 10%
 - technical problems likely to prevent higher concentrations being allowed
 - logistic problems of changeover

Hydrogen Distribution and Transport

Hydrogen Distribution and Transport

Transmission distance (km)	Reference : Amos (1998)	Specific TCI (\$/GJ)	Hydrogen price (\$/GJ)	
()		(4. 23)	(4, 23)	
Hydrogen trans	Hydrogen transmission costs (pipeline) - transmission rate 0.15 GW			
161		21.22	2.83	
1609		210.32	27.23	
Hydrogen trans	mission costs (pipeline) - transmission rate 1.5 GW	(47.3 million GJ/	year)	
161		2.83	0.83	
1609		22.3	3.53	
Hydrogen trans	port as liquefied hydrogen by truck - (45,418) - <mark>45.6</mark>	million GJ/year		
16		0.44 - (11.0)	0.24 - (1.60)	
161		0.77 - (11.0)	0.52 - (1.84)	
1609		5.10 - (11.0)	3.90 - (4.70)	
Hydrogen trans	port as compressed gas by truck - truck tube unit ca	apacity 21.72 GJ		
16		4.10	4.70	
161		8.20	10.60	
1609		57.60	79.40	
Hydrogen trans	Hydrogen transport via truck using metal hydrides			
16		7.54	2.63	
1609		105.54	42.11	
Costs of transporting conventional fuels (petrol)			4.4 ?	

Hydrogen Storage and Distribution: Conclusions

- Underground storage is cheapest at all production rates and storage times (assuming low cost of cavern)
 - biggest cost electricity for compression
 - additional transport to consumer may be high
 - opportunity for seasonal storage
- Metal hydride storage has no economy of scale
 - does not compete at high production rate or long storage time
 - may be ideal for low flow rate / short storage time
 - seen as the safest option (ideal for vehicles)
 - improved energy density required

Hydrogen Storage and Distribution: Conclusions

Liquid hydrogen

- high energy density (ideal for vehicles)
- uneconomic at low production rates (high capital cost)
- ideal for high production rate / long storage time
- relatively insensitive to storage time (low cost of Dewars)
- limited by energy cost of liquefaction process

Compressed gas

- competitive for short storage times and low production rates
- dominated by electricity cost of compression at high production rates
- dominated by pressure vessel cost for long storage times (impetus for higher pressure levels)

Hydrogen Storage and Distribution: Conclusions

- Transport and distribution
 - liquid hydrogen transport by truck is likely to be the cheapest alternative...
 - ...except for very large flow rates when pipeline distribution becomes cost-effective
 - a liquid hydrogen tanker can carry around 20 times more hydrogen than a tube trailer
 - metal hydrides may become competitive over short distances due to high storage densities
- High storage and distribution costs can make small, on-site production plants cost-competitive

Hydrogen Economy - System Topography

Hydrogen Economy - System Topography

Source: J.M. Ogden (1999)

Hydrogen Economy - System Topography

SOLAR or WIND ELECTROLYTIC HYDROGEN

Source: J.M. Ogden (1999)

Conclusions (1)

- Increased use of hydrogen as an energy carrier could improve greenhouse gas emissions through:
 - sequestration of carbon or CO₂ in large, centralised plants processing fossil fuels,
 - generation of hydrogen using renewable energy sources and its subsequent use as a transport fuel,
 - efficiency improvements from using fuel cell vehicles.
- The net cost of hydrogen to the consumer depends on the production process, the chosen storage, supply and distribution option, as well as the end-use application.

Conclusions (2)

- Optimum method for hydrogen storage and distribution depends on production rate, storage time, and delivery distance.
- Carbon sequestration may be facilitated by increased emphasis and research into pyrolysis as a production route.
- Technical advances and cost reductions are needed in hydrogen storage and distribution.

Ongoing work - Phase 2

- Development of energy and hydrogen futures scenarios
 - further elaborate scenarios selected from the RCEP, PIU Energy Review, and Shell International reports
 - develop additional scenarios within this framework to investigate different possible developments of the hydrogen economy
 - estimate improvements in greenhouse gas emissions at selected penetrations of hydrogen
- Exploring the transition to a hydrogen economy
 - further investigate the lessons to be learned from the development of existing infrastructures (electricity, natural gas, oil, rail transport, media/communications)
 - identify likely technological, market, and policy requirements to achieve a fully integrated hydrogen economy
 - identify desired "end points" and any potential to "lock-out" potentially useful transitions

Ongoing work - Phase 2

- Medium and long term economics and market projections
 - expand on Phase I estimates of the medium and long term costs of hydrogen as a fuel
 - Pinpoint and rank a robust set of needs and opportunities for future technological development
 - Results will help to identify where future development is required, possible bottlenecks, and where research funding in the longer term should be directed
 - Examine relative merits of distributed, small, local hydrogen production compared to larger scale, centralised facilities
- Environmental impact
 - Water vapour effects
 - Materials restrictions (fuel cells, storage materials)

