Metal Hydride Center of Excellence

Lennie Klebanoff, Director Jay Keller, Deputy Director

Project ID# STP 11

This presentation does not contain any proprietary information

New MHCoE Project Structure

Coordinating Council (2006)

Greg Olson (HRL), Craig Jensen (UH), Lennie Klebanoff (SNL), Jay Keller (SNL) Jim Wegrzyn (BNL), Ian Robertson (UIUC), Bruce Clemens (Stanford)

Project Groups

Destabilized Hydrides

- HRL(POC)
- Caltech
- JPL
- Stanford
- U. Hawaii
- U. Pitt/CMU
- UIUC
- U. Utah
- Intematix

HYDRIDE

CENTER OF EXCELLENCE

- NIST

В

Complex Anionic Materials

- SNL(POC)
- GE
- U. Hawaii
- UIUC
- JPL
- ORNL
- NIST
- Intematix
- -UNR

C

Amides/ Imides (M-N-H)

- SNL(POC)
- GE
- U. Utah
- UNR
- ORNL
- U. Hawaii
- JPL

D

Alanes (AIH₃)

- BNL(POC)
- SRNL
- JPL
- U. Hawaii
- SNL

Engineering Analysis & Design

Ε

- SRNL(POC)
- SNL
- NIST
- JPL
- GE

DOE 2006 Hydrogen Program Annual Review, Washington, D.C., May 17, 2006

Project A – Destabilized Hydrides

Develop strategies for reducing H₂ storage thermal requirements, improve kinetics

Technical Approaches:

Alter Thermodynamics by Hydride Destabilization:

➤ Reduce energy needed to liberate H₂ by forming dehydrogenated alloy, thereby reducing desorption temperature.

Enhance Kinetics by Nanoengineering:

➤ Minimize required H diffusion distance by using scaffolds, decreasing particle size

See talk by: Greg Olson, HRL

Project B - Complex Anionic Materials

Predict, synthesize and evaluate promising new complex hydride materials

Technical Approach:

- ➤ Develop efficient Monte Carlo method to assess energetics of starting compounds, intermediate species, and end products.
- ➤ Guided by theory, discover candidate metal hydrides by highhydrogen pressure sintering, measure hydrogen sorption properties
- ➤ Work initially with a known compound to develop strategy (K₂LiAlH₆)

Project C - Amides/Imides

Objective: Assess viability of amides, imides for on-board H₂ storage.

Technical Approach:

- Reduce thermal requirements of amides by alloying
- Examine chemical pathways, side reactions, new synthetic routes
- Determine initial engineering issues (thermal cycling, expansion)

Project D - Alane (AIH₃)

Objective: Understand desorption and regeneration properties of alane for H₂ storage

$$\alpha$$
-AIH₃ \longrightarrow AI + 3/2 H₂ H-capacity (g) = 10.1 wt%

Technical Approach:

- > Examine prospects for regeneration from AI + H₂
- > Synthesize AIH₃ polymorphs
- > Evaluate thermodynamic/kinetic properties of different alane phases
- Measure crystallographic structure of different phases

See talk by: Jason Graetz, BNL

Project E - Engineering Analysis, Design & Test

Objective: Provide engineering, analysis and design supporting DOE system performance goals

Technical Approach:

- > Develop engineering system-level storage models
- > Use engineering models to provide targeted materials properties
- > Perform thermal modeling of candidate hydride materials
- Conduct expansion, stress measurements of promising materials
- Determine heat transfer properties of new hydrides

See poster by: SRNL

Collaboration is Key to MHCoE

Project Groups Milestone Chart

Milestone Chart has been implemented Center-wide:

- > Progress checked against milestones quarterly
- > Chart aids planning, tracks technical risk
- > Rolls up to MYRDDP Milestones

Greater Detail Available for Projects A-E

